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Abstract

Attribute and size reductions are key issues in formal concept analysis.
In this paper, we consider a special kind of equivalence relation to reduce
concept lattices, which will be called local congruence. This equivalence
relation is based on the notion of congruence on lattices, with the goal of
losing as less information as possible and being suitable for the reduction
of concept lattices. We analyze how the equivalence classes obtained from
a local congruence can be ordered. Moreover, different properties related
to the algebraic structure of the whole set of local congruences are also
presented. Finally, a procedure to reduce concept lattices by the new weaker
notion of congruence is introduced. This procedure can be applied to the
classical and fuzzy formal concept analysis frameworks.

Keywords: Formal concept analysis, size concept lattice reduction,
attribute reduction, congruence relation, fuzzy sets

1. Introduction

Formal Concept Analysis (FCA) is an exploratory data analysis tech-
nique, introduced by Ganter and Wille in [16], which has been widely stud-
ied from theoretical and applied perspectives. One of the key problems of
formal concept analysis is to reduce the computational complexity of com-
puting the complete lattice associated with the considered formal context
(dataset). One procedure to address this problem is to find mechanisms to
reduce the number of attributes, preserving the most important information
contained in the context. Indeed, we can find many works which analyze
different mechanisms that chase this goal [1, 3, 11, 12, 13, 14, 19, 22, 24, 25].
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Recently, in [8, 7], the authors have presented novel mechanisms to re-
duce classical and fuzzy formal contexts based on the reduction philosophy
considered in Rough Set Theory, which is another mathematical theory
closely related to FCA [21, 22]. In the aforementioned papers, the authors
exposed that when the number of attributes of a context is reduced, an
equivalence relation on the set of concepts of the original concept lattice is
induced, both in the classical and fuzzy cases. In addition, they also showed
that the resulting equivalence classes have the structure of join-semilattices
with a maximum element. In the light of the results presented in [8, 7], it
is natural to ask how we could complement the introduced reduction mech-
anisms in order to ensure that the obtained equivalence classes are closed
algebraic structures.

Specifically, we are interested in obtaining equivalence classes satisfying
that they are convex sublattices of the original concept lattice. This target
can be reached by considering the notion of congruence relation on lat-
tices [9, 15, 17, 18]. Although congruence relations within the environment
of FCA have not been studied extensively, we can find some works that an-
alyze the use of congruence relations within this mathematical theory. For
example, congruence relations have been applied in lattice/context decom-
position as Atlas decomposition [16], the subdirect decomposition [27] or
the reverse doubling construction [26]. In addition, the links between impli-
cations and congruence relations have been analyzed in [28] and congruence
relation have proved to be suitable to handle with inconsistent formal deci-
sion contexts [20].

However, a significant amount of information can be lost when congru-
ence relations are considered to reduce concept lattices, due mainly to the
restrictions imposed by the quadrilateral-closed property. In order to ad-
dress this issue, in this paper we continue with the study presented in [5], in
which we introduced a weaker notion of congruence by means of the elimi-
nation of the aforementioned restrictive property. We will analyze how the
equivalence classes obtained from a local congruence can be ordered and so,
if some hierarchy exists among the clusters provided by the local congruence.
Then, since different local congruence relations can be defined on a concept
lattice, we will go further to a meta level, studying the algebraic structure
of the set of all local congruences that can be defined on a lattice and other
interesting properties. Finally, based on the obtained results, a procedure
to reduce concept lattices is presented by using local congruence relations.
One of the advantages provided by this procedure is that it can be applied
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both in the classical and fuzzy generalizations of formal concept analysis. In
this work, examples to illustrate the proposed procedure are also included.
The introduced examples consider classical FCA, as well as the fuzzy gener-
alization of this theory provided by the multi-adjoint framework [23]. These
examples also confirm that the use of this kind of equivalence relations is
more suitable for this task than the use of congruences, since the amount
of lost information is minimized.

The paper is organized as follows: Section 2 reviews some preliminary
notions related to lattice theory, congruences on lattices and formal concept
analysis, which are necessary to follow this work. In Section 3 the notion
of local congruence and several properties are introduced. A study on the
ordering among the equivalence classes obtained from local congruences is
included in Section 4. The properties related to the algebraic structure
of the whole set of local congruences that can be defined on a lattice and
to principal local congruences are given in Section 5. Section 6 presents a
mechanism to reduce concept lattices based on the use of local congruences.
The paper ends in Section 7, showing some conclusions and proposing di-
verse future challenges.

2. Preliminaries

In this section, some preliminary notions used in this work will be re-
called and we will state the considered notation.

We will consider a lattice as an algebraic structure (L,∧,∨) and as an
ordered set (L,�). It is well known that these two points of view are
equivalent, since we can define the two operators infimum and supremum
from the partial order and vice versa, see The Connecting Lemma in [15].
Therefore, we will write (L,∧,∨) or (L,�) indistinctly, depending on the
most suitable point of view in each case.

In this work, we are interested in defining equivalence relations on com-
plete lattices. We will write (a, b) ∈ R with a, b ∈ A to indicate that a
and b are related under the binary relation R. Notice that an equivalence
relation R on A gives rise to a partition of A, whose subsets are the equiv-
alence classes of R. The set of all the equivalence classes of R is called
quotient set and it is denoted as A/R. Equivalently, a partition of A gives
rise to an equivalence relation whose equivalence classes are the subsets of
the partition.

From this point forward if ρ ⊆ A×A is an equivalence relation on a set
A, we will denote the equivalence class of an element a ∈ A as [a]ρ = {b ∈
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A | (a, b) ∈ ρ}.

2.1. Congruence on lattices

This section introduces the notion of congruence on a lattice and some
features which are essential to develop our work. First of all, we present
the definition of equivalence relation that is compatible with the operation
of the algebraic structure.

Definition 1. We say that an equivalence relation θ on a given lattice
(L,∧,∨) is compatible with the supremum ∨ and the infimum ∧ of the
lattice if, for all a, b, c, d ∈ L,

(a, b) ∈ θ and (c, d) ∈ θ

imply
(a ∨ c, b ∨ d) ∈ θ and (a ∧ c, b ∧ d) ∈ θ

We can now state the definition of congruence on a lattice.

Definition 2. Given a lattice (L,∧,∨), we say that an equivalence relation
on L, which is compatible with both the supremum and the infimum of
(L,∧,∨) is a congruence on L.

Now, we introduce the notion of quotient lattice from a congruence based
on the operations of the original lattice.

Definition 3. Given an equivalence relation θ on a lattice (L,∧,∨), two
operators ∨θ and ∧θ on the set of equivalence classes L/θ = {[a]θ | a ∈ L},
for all a, b ∈ L, are defined as follows

[a]θ ∨θ [b]θ = [a ∨ b]θ and [a]θ ∧θ [b]θ = [a ∧ b]θ.

∨θ and ∧θ are well defined on L/θ if and only if θ is a congruence.

When θ is a congruence on L, we call 〈L/θ,∨θ,∧θ〉 the quotient lattice
of L modulo θ.

The following lemma is useful when calculating with congruences.

Lemma 4 ([15]). Given a lattice (L,∧,∨) we have that
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(i) An equivalence relation θ on L is a congruence if and only if, for all
a, b, c ∈ L,

(a, b) ∈ θ implies (a ∨ c, b ∨ c) ∈ θ and (a ∧ c, b ∧ c) ∈ θ.

(ii) Let θ be a congruence on L and a, b, c ∈ L.

(a) If (a, b) ∈ θ and a � c � b, then (a, c) ∈ θ.
(b) (a, b) ∈ θ if and only if (a ∧ b, a ∨ b) ∈ θ.

The equivalence classes of a congruence are convex sublattices of the
original lattice and besides are quadrilateral-closed. Let us recall the mean-
ing of notion of quadrilateral-closed. Let (L,�) be a lattice, an equivalence
relation θ on (L,�) and suppose that {a, b, c, d} is a subset of L composed
of four elements forming a quadrilateral, then a, b and c, d are said to be
opposite sides of the quadrilateral 〈a, b; c, d〉 (see Figure 1) if a ≺ b, c ≺ d
and either:

(a ∨ d = b and a ∧ d = c) or (b ∨ c = d and b ∧ c = a).

Therefore, quadrilateral-closed means that whenever given two opposite
sides of a quadrilateral a, b and c, d, satisfying that a, b belong to an equiv-
alence class, then c, d belong to another or the same equivalence class, that
is, if a, b ∈ [x]θ, with x ∈ L then there exists y ∈ L such that c, d ∈ [y]θ.

c

da

b

=⇒

a

cb

d

=⇒

Figure 1: Opposite sides of a quadrilateral.

The following result introduces an interesting characterization of con-
gruence which will be fundamental for the purpose of this paper.

Theorem 5 ([15]). Let (L,∧,∨) be a lattice and let θ be an equivalence
relation on L. Then θ is a congruence if and only if

(i) each equivalence class of θ is a sublattice of L,

(ii) each equivalence class of θ is convex,

(iii) the equivalence classes of θ are quadrilateral-closed.
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The set of congruences on a lattice L, denoted as Con L, is a topped
∩-structure on L × L. Hence Con L, ordered by inclusion, is a com-
plete lattice. The least element and the greatest element are given by
θ⊥ = {(a, a) | a ∈ L} and θ> = {(a, b) | a, b ∈ L}, respectively.

Given a lattice (L,∧,∨) and two elements a, b ∈ L, the least congruence
satisfying that a and b are related is denoted as θ(a,b) and it is called the
principal congruence generated by (a, b) and it is defined as follows

θ(a,b) =
∧
{θ ∈ Con L | (a, b) ∈ θ}.

Next lemma shows the importance of this definition.

Lemma 6 ([15]). Let (L,∧,∨) be a lattice and θ ∈ Con L. Then

θ =
∨
{θ(a,b) | (a, b) ∈ θ}.

Therefore, principal congruences factorize any congruence.

2.2. Formal concept analysis

Since equivalence relations will be considered in this work to reduce
concept lattices, basic definitions of FCA are recalled in order to understand
the motivation and results presented in this paper.

Definition 7. A context is a triple (A,B,R) with a set of attributes A,
a set of objects B and a crisp relationship R ⊆ A × B. We will write
R(a, b) = 1 when (a, b) ∈ R and R(a, b) = 0 when (a, b) /∈ R.

Furthermore, if we consider a context, two mappings, ↑ : 2B → 2A and
↓ : 2A → 2B, can be defined for each X ⊆ B and Y ⊆ A as:

X↑ = {a ∈ A | (a, x) ∈ R, for all x ∈ X} (1)

Y ↓ = {x ∈ B | (a, x) ∈ R, for all a ∈ Y } (2)

These operators form a Galois connection [15], which leads us to the follow-
ing definition.

Definition 8. Given a context (A,B,R) and the operators ↑ and ↓ de-
fined above. If for a pair (X, Y ) with X ⊆ B and Y ⊆ A, the equalities
X↑ = Y and Y ↓ = X hold, then the pair (X, Y ) is called concept.

6



Given a pair of concepts (X1, Y1) and (X2, Y2), we say that (X1, Y1) ≤
(X2, Y2) if X1 ⊆ X2 (Y2 ⊆ Y1, equivalently). The set of all concepts with
this ordering relation has the structure of a complete lattice, it is called
formal concept lattice and it is denoted as C(A,B,R) [15, 16].

Now, we recall two results about reduction in FCA [8]. The first one
shows that when we reduce the set of attribute of a formal context, an
equivalence relation on the set of concepts of the original concept lattice is
induced.

Proposition 9 ([8]). Given a context (A,B,R) and a subset D ⊆ A. The
set ρD = {((X1, Y1), (X2, Y2)) | (X1, Y1), (X2, Y2) ∈ C(A,B,R), X↑D↓1 =
X↑D↓2 } is an equivalence relation. Where ↑D denotes the concept-forming op-
erator, given in Expresion (1), restricted to the subset of attributes D ⊆ A.

The next result shows that every class of the equivalence relation defined
above has the structure of a join semilattice with maximum element.

Proposition 10 ([8]). Given a context (A,B,R), a subset D ⊆ A and a
class [(X, Y )]D of the quotient set C(A,B,R)/ρD. The class [(X, Y )]D is a
join semilattice with maximum element (X↑D↓, X↑D↓↑).

Hence, we cannot ensure that the classes are sublattices of the original
concept lattice, as it was shown in Example 3.10 of [8]. Therefore, it is
interesting to study when these classes are sublattices and the properties
of the obtained reduction. These results have been extended to the fuzzy
FCA framework of multi-adjoint concept lattices in [7]. This framework
was introduced by Medina, Ojeda-Aciego and Ruiz-Calviño in [23] with the
main goal of presenting a general and flexible FCA framework based on the
multi-adjoint philosophy. Multi-adjoint concept lattice generalizes different
fuzzy extension of FCA [4, 6, 10] and has widely been studied in diverse
papers [2, 13, 14]. See the basic notions in [23].

In the multi-adjoint concept lattice framework a multi-adjoint frame
(L1, L2, P,&1, . . . ,&n) needs to be fixed on which a context (A,B,R, σ) is
defined and a concept lattice M(A,B,R, σ) is obtained. On this frame-
work, the authors in [7] also proved that a reduction of the set of attributes
induces an equivalence relation onM(A,B,R, σ), in which the equivalence
classes are join-subsemilattices. This result will be recalled next, where ↑D
and ↓D are the concept-forming operators associated with the subcontext
M(D,B,R|D×B, σ), with D ⊆ A.
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Proposition 11 ([7]). Let D ⊆ A be a subset of attributes. The set ρD =

{(〈g1, f1〉, 〈g2, f2〉) | 〈g1, f1〉, 〈g2, f2〉 ∈ M(A,B,R, σ), g↑D↓
D

1 = g↑D↓
D

2 } is an
equivalence relation and every class [〈g, f〉]D ofM(A,B,R, σ)/ρD is a join-
semilattice with maximum element 〈g↑D↓D , g↑D↓D↑〉.

Once we have recalled the required preliminary notions, the main con-
tributions of this work are presented in the following section.

3. Weakening the notion of congruence

In this section, we present a weaker notion of congruence relation in
order to complement reduction mechanisms in FCA. As we have recalled,
any reduction of the set of attributes generates a partition in the set of con-
cepts associated with the original context, where the obtained equivalence
classes may not form sublattices of the original concept lattice. Our interest
lies in generating groups of concepts with a closed algebraic structure by
complementing the reductions given in FCA.

This goal can be achieved through the notion of congruence relation on
lattices. Therefore, we will consider the use of congruence relations to reduce
concept lattices, and we will analyze the obtained results. In particular, we
are interested in the least congruence whose equivalence classes contain the
equivalence classes induced by an attribute reduction of a context. Usually,
this reduction is given by reducts which are minimal subsets of attributes
preserving the information in the dataset. More details are included in [8].

Next, we illustrate the result of applying congruences through a practical
example considered in [8]. In this example, we will show that the equivalence
classes induced by a reduction procedure may be noticeably different from
the ones provided by the least congruence containing the partition induced
by the reduction, as a consequence, this difference would entail a relevant
loss of information.

Example 12. Given the formal context (A,B,R) displayed in Table 1,
where the set of objects in B are the planets of the Solar System to-
gether with the dwarf planet Pluto, that is B = {Mercury (M), Venus (V),
Earth (E), Mars (Ma), Jupiter (J), Saturn (S), Uranus (U), Neptune (N),
Pluto (P)} and the set of attributes A = {small size (ss), medium size
(ms), large size (ls), near sun (ns), far sun, (fs), moon yes (my), moon no
(mn)}.
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R M V E Ma J S U N P
small size 1 1 1 1 0 0 0 0 1
medium size 0 0 0 0 0 0 1 1 0
large size 0 0 0 0 1 1 0 0 0
near sun 1 1 1 1 0 0 0 0 0
far sun 0 0 0 0 1 1 1 1 1
moon yes 0 0 1 1 1 1 1 1 1
moon no 1 1 0 0 0 0 0 0 0

Table 1: Relation of Example 12.

In the left side of Figure 2, it is displayed the concept lattice from the
given context. In [8], the rough set reduct D1 = {small size,medium size,
near sun,moon yes} was considered to reduce the context. According to
Proposition 9, this reduction makes that the concepts of the original concept
lattice are grouped in equivalence classes which are represented in the middle
of Figure 2 by means of a Venn diagram. We know that each equivalence
class has the structure of a join semilattice with maximum element as it is
stated in Proposition 10.

C0

C2 C4C1C5 C3

C6 C11C7

C8C9

C10

C0

C2 C4C1C5 C3

C6 C11C7

C8C9

C10

C0

C2 C4C1C5 C3

C6 C11C7

C8C9

C10

Figure 2: The original concept lattice (left), the obtained reduction in [8] (middle) and
the least congruence containing the previously reduction (right).

We can bring together the reduction given in FCA and congruences,
finding the least congruence such that each equivalence class induced by
the reduction of the context is included in one equivalence class provided
by the congruence relation. This least congruence is shown in the right side
of Figure 2 by means of a dashed Venn diagram. As we can see in Figure 2,
this congruence relation is composed of only two equivalence classes, since
it has grouped too many concepts in each class. Consequently, in this case,
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the use of congruences entails a relevant loss of information, which is not
convenient in any process of data analysis. �

The result obtained in the previous example reveals the necessity of
a weaker notion of congruence removing the quadrilateral-closed property
and preserving the other two properties in the characterization given in
Theorem 5. This weaker notion is introduced in the following definition.

Definition 13. Given a lattice (L,�), we say that an equivalence relation
δ on L is a local congruence if the following properties hold:

(i) each equivalence class of δ is a sublattice of L,

(ii) each equivalence class of δ is convex.

Remark 14. Clearly, the attribute reduction of the concept lattice intro-
duced in Example 12 provides a local congruence (concept lattice in the
middle of Figure 2). Therefore, the introduced notion offers a better reduc-
tion than the one provided using congruences, aggregating as less concepts
(information) as possible. Moreover, since in this particular case the reduc-
tion already produces equivalence classes that are convex sublattices, then
the amount of lost information with this weaker notion of congruence is
minimized as much as possible.

Although this new definition is a weak definition of the notion of con-
gruence, the name of weak-congruence has already been used in the litera-
ture [29, 30, 31, 32] in order to define congruences without the reflexivity
property, that is, a weak congruence is a symmetry, transitivity and compat-
ible relation. Therefore, another suitable name has been considered in this
paper to the introduced general notion of congruence, whose justification
will be introduced after the next direct characterization of Definition 13 in
terms of the equivalence relation δ.

Proposition 15. Given a lattice (L,�) and an equivalence relation δ on L,
the relation δ is a local congruence on L if and only if, for each a, b, c ∈ L,
the following properties hold:

(i) If (a, b) ∈ δ and a � c � b, then (a, c) ∈ δ.
(ii) (a, b) ∈ δ if and only if (a ∧ b, a ∨ b) ∈ δ.

Proof. The proof holds directly from the definition of local congruence.�
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This result will be basic to introduce the following characterization,
which generalizes Lemma 4(i) and motivates the considered notion.

Proposition 16. Given a lattice (L,�) we have that an equivalence rela-
tion δ on L is a local congruence if and only if, for all a, b, c ∈ L, if (a, b) ∈ δ
and a ∧ b � c � a ∨ b, then we have that

(a ∨ c, b ∨ c) ∈ δ and (a ∧ c, b ∧ c) ∈ δ

Proof. Let us assume that δ is a local congruence on L and we consider
a, b, c ∈ L such that (a, b) ∈ δ and a ∧ b � c � a ∨ b. Straightforwardly, by
Proposition 15, we have that

(a, a ∨ b) ∈ δ and (b, a ∨ b) ∈ δ. (3)

In addition, since a ∧ b � c � a ∨ b, by the supremum property, the
following inequalities hold

a ∨ (a ∧ b) � a ∨ c � a ∨ (a ∨ b),

which is equivalent to
a � a ∨ c � a ∨ b.

Hence, as (a, a ∨ b) ∈ δ, by Proposition 15(i), we obtain that (a, a ∨ c) ∈
δ. Considering an analogous procedure to the previous one, we have that
(b, b ∨ c) ∈ δ. Therefore, since (a, a ∨ c) ∈ δ and (b, b ∨ c) ∈ δ, by the
hypothesis (a, b) ∈ δ and the transitivity property of δ, we can assert that
(a ∨ c, b ∨ c) ∈ δ. Analogously, we have that (a ∧ c, b ∧ c) ∈ δ.

Now, let us assume that δ is an equivalence relation on L, such that, if
(a, b) ∈ δ and a ∧ b � c � a ∨ b, then it satisfies that

(a ∨ c, b ∨ c) ∈ δ and (a ∧ c, b ∧ c) ∈ δ

for all a, b, c ∈ L.
We will use Proposition 15 in order to prove that δ is a local congruence.

If (a, b) ∈ δ and a � c � b then, in particular, a ∧ b � a � c � b � a ∨ b.
Therefore, by hypothesis, we have that (a ∧ c, b ∧ c) ∈ δ. Since a ∧ c = a
and c ∧ b = c, we obtain that (a, c) ∈ δ. Hence, item (i) of Proposition 15
is satisfied.

In addition, for each (a, b) ∈ δ if we consider c = a, by hypothesis, we
have that (a ∨ c, b ∨ c) ∈ δ, that is, (a, b ∨ a) ∈ δ. Similarly, for c = b we
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have that (a ∧ b, b) ∈ δ. Hence, by the transitivity property of δ, we obtain
that (a ∧ b, a ∨ b) ∈ δ. Following a similar reasoning, we can easily prove
that, for all a, b ∈ L, if (a∧ b, a∨ b) ∈ δ then (a, b) ∈ δ. Therefore, item (ii)
of Proposition 15 also holds.

Consequently, we can conclude that δ is a local congruence on L. �

Hence, the difference from the equivalence given in Lemma 4(i) is that
in the aforementioned lemma, the element c is arbitrary in L, and in Propo-
sition 16 is a local element bounded by a ∧ b and a ∨ b.

As we highlighted above, the particular algebraic structure of the equiva-
lence classes is the most important property associated with the new notion.
The set of these classes is formally defined next.

Definition 17. Let (L,�) be a lattice and δ a local congruence, the quo-
tient set L/δ provides a partition of L, which is called local congruence
partition (or lc-partition in short) of L and it is denoted as πδ. The ele-
ments in the lc-partition πδ are convex sublattices of L.

According to the previous definition, it can be noted that each equiva-
lence class of the quotient set L/δ is a closed algebraic structure. Moreover,
each local congruence relation univocally determines a local congruence par-
tition and vice versa. As a consequence, both notions can be considered
indistinctly.

In the following section, a formal definition of ordering among the classes
of the quotient set of a local congruence will be studied.

4. The quotient set of a local congruence

Now, we focus on the equivalence classes of a quotient set provided by
a local congruence. We are interested in studying how we can establish an
ordering relation between these classes. The following definition will play a
key role for this purpose.

Definition 18. Let (L,�) be a lattice and a local congruence δ on L.

(i) A sequence of elements of L, (p0, p1, . . . , pn) with n ≥ 1, is called
a δ-sequence, denoted as (p0, pn)δ, if for each i ∈ {1, . . . , n} either
(pi−1, pi) ∈ δ or pi−1 � pi holds.

(ii) If a δ-sequence, (p0, pn)δ, satisfies that p0 = pn, then it is called a δ-
cycle. In addition, if the δ-cycle satisfies that [p0]δ = [p1]δ = · · · = [pn]δ
is said to be closed.
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The notions in Definition 18 are clarified in Figure 3 and Figure 4, where
the triple vertical line that connects pi−1 with pi means that they are related
under the considered local congruence relation, that is, (pi−1, pi) ∈ δ. The
simple line indicates that the two elements are connected by means of the
ordering relation defined on the lattice.

The following definition provides a first step to define a partial order on
the quotient set provided by a local congruence.

Definition 19. Given a lattice (L,�) and a local congruence δ on L, we
define a binary relation �δ on L/δ as follows:

[x]δ �δ [y]δ if there exists a δ-sequence (x′, y′)δ

for some x′ ∈ [x]δ and y′ ∈ [y]δ.

p0 p2

p1

p4

p3

pn−1

pn−2 pn

. . .

Figure 3: Example of δ-sequence.

p0 = pn

p1 p3

p2

p5

p4

pn−1

pn−2

. . .

Figure 4: Example of δ-cycle.

Notice that the relation �δ given in Definition 19 is a preorder. Clearly,
by definition, �δ is reflexive and transitive. However, the relation �δ is
not a partial order since the antisymmetry property does not hold, for any
local congruence in general. In the following example, we show a case in
which the previously defined relation �δ does not satisfy the antisymmetry
property.
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⊥

x1 c1 y1

x2 c2 y2

>

Figure 5: Example where �δ is not a partial order.

Example 20. Given the lattice (L,�) and the local congruence δ given in
Figure 5. We have that the equivalence classes of δ are [>]δ = {>}, [x1]δ =
{x1, x2}, [c1]δ = {c1, c2}, [y1]δ = {y1, y2} and [⊥]δ = {⊥}. It is easy to check
that these equivalence classes are convex sublattices of L. Moreover, we
can observe that [x1]δ �δ [y1]δ since there exists a δ-sequence, (x1, y2)δ =
(x1, c2, c1, y2), and also [y1]δ �δ [x1]δ since there also exists a δ-sequence,
(y1, x2)δ = (y1, x2), but [x1]δ 6= [y1]δ and thus �δ is not antisymmetric. �

There are certain cases in which the relation �δ is a partial order, de-
pending on the local congruence.

Example 21. Let (L,�) be a lattice isomorphic to the concept lattice
given in Example 12 and δ the local congruence shown in the left side of
Figure 6. In this case, the considered local congruence makes that the rela-
tion �δ satisfies the antisymmetry property and, consequently, the relation
�δ is a partial order and the Hasse diagram of (L/δ,�δ) can be given (right
side of Figure 6). �

The following results state different conditions under which the relation
�δ is a partial order.

Proposition 22. Given a lattice (L,�) and a local congruence δ, if for any
two equivalence classes [x]δ, [y]δ ∈ L/δ there exists only one class [c]δ ∈ L/δ
such that [x]δ �δ [c]δ �δ [y]δ and [y]δ �δ [c]δ �δ [x]δ satisfying that x1 �
c1 � y1 and y2 � c2 � x2 with x1, x2 ∈ [x]δ, c1, c2 ∈ [c]δ and y1, y2 ∈ [y]δ,
then [x]δ = [y]δ.

Proof. Let us consider two equivalence classes [x]δ, [y]δ ∈ L/δ. Hence,
there exists a class [c]δ ∈ L/δ such that [x]δ �δ [c]δ �δ [y]δ and [y]δ �δ
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Figure 6: A local congruence δ on L (left) and its quotient set (L/δ,�δ) (right).

[c]δ �δ [x]δ satisfying that x1 � c1 � y1 and y2 � c2 � x2 with x1, x2 ∈ [x]δ,
c1, c2 ∈ [c]δ and y1, y2 ∈ [y]δ. Then, we have that [x]δ �δ [c]δ and [c]δ �δ [x]δ
and, since the classes of δ are sublattices of L, we also have that x1 ∨ x2

and c1 ∨ c2 exist and belong to the classes [x]δ and [c]δ, respectively. In
addition, we have that x1 ∨ c2 � c1 ∨ c2 and x1 ∨ c2 � x1 ∨ x2, thus
x1 ∨ c2 � (x1 ∨ x2) ∧ (c1 ∨ c2). Hence, x1 � (x1 ∨ x2) ∧ (c1 ∨ c2) � x1 ∨ x2

and c2 � (x1 ∨ x2) ∧ (c1 ∨ c2) � c1 ∨ c2, by the convexity of the classes we
have that (x1 ∨ x2) ∧ (c1 ∨ c2) belongs to both classes, which implies that
both classes are just the same class: [x]δ = [c]δ.

We can proceed in an analogous way in order to prove that [c]δ = [y]δ.
Hence, we obtain that [x]δ = [c]δ = [y]δ. �

From the previous proposition we obtain the following corollary.

Corollary 23. Given a lattice (L,�) and a local congruence δ, if for any
two equivalence classes [x]δ, [y]δ ∈ L/δ such that [x]δ �δ [y]δ and [y]δ �δ [x]δ
satisfy that x1 � y1 and y2 � x2 with x1, x2 ∈ [x]δ and y1, y2 ∈ [y]δ, then
[x]δ = [y]δ.

Proof. It is straightforwardly deduced from Proposition 22 taking the
class [c]δ as either the class [x]δ or [y]δ. �

It is easy to see in Figure 5 that �δ is not a partial order because of
there exists a δ-cycle composed of elements belonging to different equiva-
lence classes, i.e. the δ-cycle (x2, x1, c2, c1, y2, y1, x2). In order to avoid this
problem, every δ-cycle must be contained in one single class, that is, every
δ-cycle must be closed in the lattice, as the next result states.
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Theorem 24. Given a lattice (L,�) and a local congruence δ on L, the
preorder �δ given in Definition 19 is a partial order if and only if every
δ-cycle in L is closed.

Proof. Let us assume that δ is a local congruence on L and that every
δ-cycle in L is closed and let us prove that �δ is a partial order.

The reflexivity of �δ holds in a direct way.
Now, we prove the transitivity. If [x]δ �δ [y]δ and [y]δ �δ [z]δ for

[x]δ, [y]δ, [z]δ ∈ L/δ, then there exist two δ-sequences (x′, y1)δ = (x′, p1, . . . , pn, y1)
and (y2, z

′)δ = (y2, q1, . . . , qm, z
′), with x′ ∈ [x]δ, y1, y2 ∈ [y]δ and z′ ∈ [z]δ.

Hence, there exists a δ-sequence (x′, z′)δ = (x′, p1, . . . , pn, y1, y2, q1, . . . , qm, z
′)

satisfying the conditions of Definition 19. Thus, [x]δ �δ [z]δ and the relation
�δ is transitive.

In order to prove that �δ is antisymmetric, we assume that [x]δ �δ [y]δ
and [y]δ �δ [x]δ, for some x, y ∈ L. Then there exist x′ ∈ [x]δ, y

′ ∈
[y]δ, a δ-sequence (x′, y′)δ = (x′, p1, . . . , pn, y

′) and a δ-sequence (y′, x′)δ =
(y′, q1, . . . , qm, x

′). Clearly, (x′, p1, . . . , y
′, q1, . . . , x

′) is a δ-cycle and since
every δ-cycle is closed, we obtain [x]δ = [y]δ. Hence �δ is antisymmetric
and thus a partial order.

Now, suppose that �δ is a partial order, if (p0, . . . , pn, p0) is a δ-cycle of
L (as it is showed in Figure 4) then we have that

[p0]δ ~1 [p1]δ ~2 [p2]δ ~3 [p3]δ ~4 · · ·~n−2 [pn−2]δ ~n−1 [pn−1]δ ~n [pn]δ ~0 [p0]δ

where ~i ∈ {=,�δ} for all i ∈ {0, . . . , n}. Since the chain begins and ends
with the same element, and �δ is a partial order, we obtain that the δ-cycle
is closed. �

As a consequence, under the assumption of the introduced necessary
and sufficient condition, this result allows to order the convex sublattices
(classes) obtained after the attribute reduction, which provide a hierarchiza-
tion among the obtained concepts. The following example shows that this
hierarchization does not form a complete lattice.

Example 25. Let (L,�) be the lattice given in the left side of Figure 7
which is isomorphic to a concept lattice obtained from a formal context and
δ the local congruence shown in the middle of Figure 7. In this case, the
considered local congruence makes that the relation �δ be a partial order.

However, the quotient set L/δ ordered with �δ does not form a lattice,
as it is shown in the right side of Figure 7, because the equivalence classes
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Figure 7: The lattice (L,�) (left), the local congruence δ on L (middle) and its corre-
sponding quotient set (L/δ,�δ) with the ordering relation �δ (right).

[x]δ and [y]δ have not got a supremum, that is, their least upper bound does
not exist. �

Therefore, an ordering can be defined on the classes of a local congru-
ence, when every δ-cycle in L is closed, which could not provide a complete
lattice, but it is enough to produce a hierarchization among the computed
reduced concepts. In order to ensure that a local congruence can always
be computed, such as every δ-cycle is closed, more properties of local con-
gruences need to be studied. Specifically, it is important to analyze the
relationships among these new congruences.

5. Algebraic structure of local congruences on a lattice

In this section, we study the algebraic structure of the set of all local
congruences defined on a lattice. First of all, we show that local congruences
can be ordered by using the definition of inclusion of equivalence relations,
which is recalled next.

Definition 26. Let ρ1 and ρ2 be two equivalence relations on a lattice
(L,�). We say that the equivalence relation ρ1 is included in ρ2, denoted as
ρ1 v ρ2, if for every equivalence class [x]ρ1 ∈ L/ρ1 there exists an equivalence
class [y]ρ2 ∈ L/ρ2 such that [x]ρ1 ⊆ [y]ρ2 .

We say that two equivalence relations, ρ1 and ρ2, are incomparable if
ρ1 6v ρ2 and ρ2 6v ρ1.

From now on, the set of all local congruences on L ordered by the inclu-
sion v will be denoted as (LCon L,v). First of all, we will show that the
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set (LCon L,v) is a complete lattice, proving that (LCon L,v) is a topped
u-structure with a maximum element. In addition, the maximum and the
minimun of the complete lattice (LCon L,v) are characterized.

Theorem 27. Given a lattice (L,�), the set (LCon L,v) is a complete
lattice. Moreover, the least and greatest element are given by δ⊥ = {(a, a) |
a ∈ L} and δ> = {(a, b) | a, b ∈ L}, respectively.

Proof. Let us assume that (L,�) is a lattice and (LCon L,v) is the set
of all local congruences. First of all, we need to prove that (LCon L,v) is
a topped ∩-structure. Therefore, we consider a non-empty family of local
congruence, that is, {δi}i∈I ⊆ LCon L where I is a index set.

It is well known that the intersection of equivalence relations is an equiv-
alence relation. Hence,

⋂
i∈I δi is indeed an equivalence relation. Now, we

prove that each equivalence class of the intersection is a convex sublattice.
Let us consider an equivalence class Z ∈ L/(

⋂
i∈I δi), hence there exist a

family of equivalence classes {Xi ∈ L/δi | i ∈ I} such that Z =
⋂
i∈I Xi. If

we consider a, b ∈ Z, then we have that a, b ∈ Xi for all i ∈ I and, since
each Xi is a convex sublattice of L, we have that a ∧ b, a ∨ b ∈ Xi for all
i ∈ I. Therefore, a ∧ b, a ∨ b ∈

⋂
i∈I Xi = Z, that is, Z is a sublattice

of L. In addition, if a � b and we consider c ∈ L such that a � c � b,
then we have that c ∈ Xi for all i ∈ I since each Xi is convex. Therefore,
c ∈

⋂
i∈I = Z, that is, Z is also convex. Thus,

⋂
i∈I δi ∈ LCon L, i.e.,

LCon L is a ∩-structure.
Now, we need to prove that LCon L has a maximum element. It is

clear that the equivalence relation on L that relates all elements of L, that
is, {(a, b) | a, b ∈ L} = L × L, has convex sublattices of L as equivalence
classes, hence {(a, b) | a, b ∈ L} = L × L ∈ LCon L and moreover, we
cannot find another local congruence that contains it. Therefore, {(a, b) |
a, b ∈ L} = L × L is the greatest local congruence and we denote it as δ>.
Thus, the set (LCon L,v) is a complete lattice.

In addition, it is clear that the least local congruence is the equivalence
relation on L that only relates each elements of L to itself, that is, δ⊥ =
{(a, a) | a ∈ L}. �

Next definition shows the notion of principal local congruence, which is
the least local congruence that can be defined from two given elements of a
lattice.
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Definition 28. Given a pair of elements (a, b) ∈ L×L, the principal local
congruence generated by (a, b), denoted as δ(a,b), is the least local congruence
that contains the elements a and b in the same equivalence class, that is

δ(a,b) =
∧
{δ ∈ LCon L | (a, b) ∈ δ}

Note that, for every pair of elements (a, b) ∈ L × L, the principal lo-
cal congruence δ(a,b) always exists since the set (LCon L,v) is a complete
lattice.

Finally, the last theorem generalizes the characterization of congruences
in terms of principal congruences (recalled in Lemma 6) for local congru-
ences, considering an arbitrary equivalence relation.

Theorem 29. Given a lattice (L,�) and an equivalence relation ρ, the least
local congruence containing ρ is

δρ =
∨
{δ(a,b) | (a, b) ∈ ρ}

Proof. Let us assume that δρ is the least local congruence containing an
equivalence relation ρ and let us prove that δρ is the least upper bound of
the set S = {δ(a,b) | (a, b) ∈ ρ}. Due to ρ v δρ, it is clear that S ⊆ {δ(c,d) |
(c, d) ∈ δρ} and, by Proposition 30, we have that δρ =

∨
{δ(c,d) | (c, d) ∈ δρ}.

Hence δρ is an upper bound for S. Now, let us assume that δ′ρ is an upper
bound for S, which means that for all (a, b) ∈ ρ then δ(a,b) v δ′ρ. Therefore,
by the supremum property we have that

δρ =
∨
{δ(a,b) | (a, b) ∈ ρ} v δ′ρ

which finishes the proof. �

In particular, the previous result is also satisfied when we consider a
local congruence instead of an arbitrary equivalence relation.

Corollary 30. Let (L,�) be a lattice and let δ a local congruence of (LCon L,v
). Then

δ =
∨
{δ(a,b) | (a, b) ∈ δ}.

Proof. Straightforwardly from Theorem 29, considering a local congru-
ence δ as the equivalence relation ρ. �

Note that this result will be very important in the reduction procedure
in order to obtain a local congruence δ satisfying that (L/δ,�δ) is a partial
ordered set (poset), as we will show in the next section.
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6. Reduction mechanism of concept lattices

This section will introduce an attribute reduction mechanism focused
on grouping concepts in convex sublattices, having a hierarchy in form of a
poset, which is equivalent by Theorem 24 to computing a local congruence
with all δ-cycle in L being closed. In order to fulfill this last requirement we
will use the following procedure from an arbitrary local congruence. Given
a lattice (L,�) and a local congruence δ on L, if every δ-cycle in L is closed,
then we already have that (L/δ,�δ) is a poset. Otherwise, we can define
an equivalence relation ρ on L/δ as

ρδ = {([x]δ, [y]δ) ∈ L/δ × L/δ | [x]δ �δ [y]δ and [y]δ �δ [x]δ} (4)

If there are two different equivalence classes [x]δ, [y]δ such that [x]δ �δ [y]δ
and [y]δ �δ [x]δ, this means that there is a δ-cycle, (x′, x′)δ or (y′, y′)δ for
some x′ ∈ [x]δ, y

′ ∈ [y]δ. Therefore, the equivalence relation ρδ groups
all the equivalence classes that contain elements in the δ-cycle in a unique
equivalence class providing a new partition of L.

However, the equivalence relation ρδ may not be a local congruence.
Since clearly δ v ρδ, by Theorem 29, we can find the least local congruence
δ̄ that contains the equivalence relation ρδ, that is, δ v ρδ v δ̄. Hence,
every δ̄-cycle in L is closed and, by Theorem 24, �δ̄ is a partial order on
the quotient set L/δ̄.

This procedure to ensure the ordering between the classes will be in-
corporate in the procedure to reduce concept lattices by local congruences,
which is summarized in the following steps:

Notice that, the set D in Algorithm 1 can be given from any reduction
mechanism. For example, it can be a rough set reduct [8, 7]. Moreover,
observe that the relation ρD was defined in the classical case in Proposition 9
and in the fuzzy case in Proposition 11.

This previous mechanism provides the desired reduction, as the following
result shows.

Proposition 31. Given a concept lattice C(A,B,R) and a subset of at-
tributes D ⊆ A, then Algorithm 1 provides the least local congruence δ
containing the induced relation ρD and (C(A,B,R)/δ,�δ) is a poset.

Proof. Let us assume that we have a concept lattice C(A,B,R) and a
partition of C(A,B,R) induced by an attribute reduction provided by D ⊆
A.
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Algorithm 1: Reducing concept lattices by local congruences

input : C(A,B,R), D ⊆ A
output: δ

1 Obtain the relation ρD associated with the attribute reduction
given by D;

2 Compute the least local congruence δD containing ρD;
3 if every δD-cycle is closed, then
4 δ = δD

5 else
6 Compute ρδD by Equation (4);
7 if ρ is a local congruence then
8 δ = ρδD

9 else
10 Obtain the least local congruence δρ such that

δD v ρδD v δρ;
11 δ = δρ

12 return δ
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The starting point of the procedure (Line 1) is the computation of the
equivalence relation associated with the attribute reduction given by the
subset D, which is denoted as ρD.

In Line 2, by Theorem 29, we obtain the least local congruence con-
taining ρD, which is denoted as δD. Hence, in particular, ρD v δD. From
this local congruence, the relation �δD defined as in Definition 19 is a pre-
order. By Theorem 24, if every δD-cycle is closed (checked in Line 3), then
(C(A,B,R)/δ,�δ) is a poset, that is, the required relation δ is δD (Line 4).

Otherwise, �δD is only a preorder and we consider the new equivalence
relation ρδD defined in Equation 4. As a consequence, we have that δD v
ρδD . If ρδD is a local congruence, by the definition of ρδD , we have that every
ρδD -cycle is closed and, according to Theorem 24, �ρδD is a partial order
on C(A,B,R)/ρδD . In this case, δ = ρδD is the least local congruence we
are interested in (Lines 6-8). Otherwise, from Theorem 29, in Line 10 we
obtain the least local congruence δρ containing to ρδD , such that ρδD v δρ.
Therefore, we have that every δρ-cycle is closed by the definition of ρδD ,
and by Theorem 24 we obtain that �δρ is a partial order on C(A,B,R)/δρ.
Thus, δ = δρ is the least local congruence we are looking for.

Consequently, from the procedure we obtain that (C(A,B,R)/δ,�δ) is
a poset where δ is the least local congruence containing ρD. �

In the next example we will show the procedure described above.

Example 32. Let us consider a context (A,B,R) and a subset of at-
tributes D ⊆ A such that after the reduction process we obtain the induced
partition of the concept lattice displayed in the left side of Figure 8. Thus,
we consider the local congruence δD displayed in the right side of Figure 8,
it is easy to check that δD is indeed a local congruence and the least one
containing the induced partition.

Considering the relation �δD given as in Definition 19, we can note that
the δD-sequence, (p0, p0)δD = (p0, p5, p1, p7, p2, p3, p0), is in fact a δD-cycle in
the lattice and it is not closed. Therefore, we define the equivalence relation
ρ = {([x]δD , [y]δD) ∈ L/δD × L/δD | [x]δD �δD [y]δD and [y]δD �δD [x]δD}.
The new partition of L provided by the equivalence relation ρ is shown in
the left side of Figure 9. We can observe that the equivalence relation ρ
groups the classes of L/δD that contain elements in the δD-cycle into a single
equivalence class. Moreover, it is also easy to observe that δD v ρ.

Now, we have to verify if the equivalence relation ρ is a local congruence,
but we can observe that it is not, since the equivalence class that contains

22



⊥

p0 p1 p2

p9 p10 p11

p12

p13

p14

p16

p15

>

p4p3 p5
p6 p7 p8

⊥

p0 p1 p2

p9 p10 p11

p12

p13

p14

p16

p15

>

p4p3 p5
p6 p7 p8

Figure 8: Partition induced ρD (left) and local congruence δD (right) of Example 32.

the δD-cycle is not a (convex) sublattice of L. Thus, we must find the least
local congruence δρ that contains the equivalence relation ρ.

⊥

p0 p1 p2

p9 p10 p11

p12

p13

p14

p16

p15

>

p4p3 p5
p6 p7 p8

⊥

p0 p1 p2

p9 p10 p11

p12

p13

p14

p16

p15

>

p4p3 p5
p6 p7 p8

[⊥]δρ

[p13]δρ

[p16]δρ

[>]δρ

Figure 9: The equivalence relation ρ on L/δ (left), the least local congruence δρ containing
ρ (middle) and the quotient set L/δρ (right).
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In this case, the least local congruence that satisfies δD v ρ v δρ is
the local congruence shown in the middle of Figure 9. Hence, by Theo-
rem 24, we have that �δρ is a partial order on L/δρ and the elements of
the corresponding quotient set can be ranked. The ordered set (L/δρ,�δρ),
is displayed in the right side of Figure 9. It is important to note that the
local congruence that we have finally obtained is not a congruence because
the least congruence, containing the equivalence relation ρ, should include
p13, p14, p15, p16 and > in the same class, in order to satisfy the quadrilateral-
closed property. �

Now, we apply the proposed mechanism to reduce a concept lattice
in a fuzzy formal concept framework. Specifically, the following example
considers a fuzzy formal context studied in [7].

Example 33. The considered framework is (L,L, L,&∗G), where the lat-
tice L = {0, 0.5, 1} and &∗G is the discretization of the Gödel conjunctor
defined on L. It is also considered a fuzzy context (A,B,R, σ), composed of
three objects, B = {b1, b2, b3}, four attributes A = {a1, a2, a3, a4}, the rela-
tion R shown in Table 2, and the mapping σ constantly &∗G. All concepts of
this fuzzy context are listed in Figure 10, where the corresponding concept
lattice is illustrated as well.

R b1 b2 b3

a1 1 0 0
a2 0 0.5 0
a3 0 0 1
a4 0 0.5 1

Table 2: Fuzzy relation R of Example 33.

In [7], authors obtained four different reducts to reduce the concept
lattice. In this example, we will consider one of these reducts, specifically
D1 = {a1, a2}, to compute a local congruence of the reduced concept lattice
obtained from this reduct.

The partition induced by D1 is given in the left side of Figure 11, and the
corresponding reduced concept lattice is depicted in its right side. In this
case, the least local congruence containing this partition is the partition
itself, since each equivalence class is a convex sublattice of the original
concept lattice. Moreover, this local congruence is not a congruence because
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Ci Extent Intent
b1 b2 b3 a1 a2 a3 a4

0 0 0 0 1 1 1 1
1 1 0 0 1 0 0 0
2 0 0.5 0 0 1 0 1
3 0 0 1 0 0 1 1
4 1 1 1 0 0 0 0
5 0 1 0 0 0.5 0 0.5
6 0 0.5 1 0 0 0 1
7 0 1 1 0 0 0 0.5 C0

C1

C2 C3

C4

C5 C6

C7

Figure 10: Fuzzy concepts (left) and concept lattice (right) of the context associated
with Table 2.

C0

C1

C2 C3

C4

C5 C6

C7

[C0]D1

[C1]D1

[C5]D1

[C2]D1

[C4]D1

Figure 11: Partition induced by the reduction (left) and concept lattice of the reduced
context (right) considering the reduct D1.

it is not quadrilateral-closed, for example, C0, C2 and C3, C6 are opposite
sides of the quadrilateral 〈C0, C2;C3, C6〉, the concepts C3 and C6 belong
to one equivalence class, but C0 and C2 belong to different equivalence
classes. Indeed, the least congruence containing the partition induced by
the reduction of D1 is the congruence with only one class containing all
concepts. Thus, also in the fuzzy framework, local congruences offer more
suitable reductions than the ones given by congruences. �

Therefore, the proposed reduction mechanism based on local congru-
ences minimizes the amount of lost information with respect to the use of
congruences, clustering the concepts in convex sublattices and forming a
hierarchy among them.
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7. Conclusions and future work

In this work, we have introduced a weaker notion of congruence, which
has been called local congruence. We have analyzed how the elements of the
quotient set generated by a local congruence can be ordered. Furthermore,
we have proven that the algebraic structure of the set of local congruences is
a complete lattice. We have also shown a characterization of local congru-
ences in terms of its principal local congruences, as well as an extension of
this characterization by considering any arbitrary equivalence relation. As
a consequence, a procedure for computing the least local congruence con-
taining a given equivalence relation has been presented. From this study, we
have presented a new mechanism to reduce (fuzzy) concept lattices based on
the notion of local congruence. Considering this reduction mechanism, we
obtain a partition of the concepts of the original concept lattice satisfying
that each equivalence class has the structure of a convex sublattice of the
original concept lattice. In addition, we have shown that the consideration
of local congruences to reduce concept lattices is more suitable than the
consideration of congruences since a smaller amount of information is lost
during the reduction process.

In the near future, more properties of the introduced procedure will be
studied. For example, due to this reduction modifies the original partition
given by the attribute reduction, it is important to analyze how it alters
the formal context. In addition, we are interested in studying how an opti-
mal reduct can be selected and the influence that this selection has on the
complementary local congruence. Another important goal will be to apply
this reduction procedure in real databases. Specifically, we would like to
analyze the potential of the presented reduction mechanism in databases
related to digital forensic analysis, in which we are leading the COST Ac-
tion: DIGital FORensics: evidence Analysis via intelligent Systems and
Practices (DigForASP).

References

[1] C. Alcalde and A. Burusco. Study of the relevance of objects and attributes of l-fuzzy
contexts using overlap indexes. In J. Medina, M. Ojeda-Aciego, J. L. Verdegay, D. A.
Pelta, I. P. Cabrera, B. Bouchon-Meunier, and R. R. Yager, editors, Information
Processing and Management of Uncertainty in Knowledge-Based Systems. Theory
and Foundations, pages 537–548, Cham, 2018. Springer International Publishing.

[2] L. Antoni, M. E. Cornejo, J. Medina, and E. Ramirez. Attribute classification and
reduct computation in multi-adjoint concept lattices. IEEE Transactions on Fuzzy
Systems, pages 1–1, 2020.

26
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contexts. Fuzzy Sets and Systems, 234:22–33, 2014.

[5] R. G. Aragón, J. Medina, and E. Ramı́rez-Poussa. Weaken the congruence notion
to reduce concept lattices. In European Symposium on Computational Intelligence
and Mathematics (ESCIM2019), pages 45–46, 2019.
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[10] A. Burusco and R. Fuentes-González. Construction of the L-fuzzy concept lattice.

Fuzzy Sets and Systems, 97(1):109–114, 1998.
[11] J. Chen, J. Mi, B. Xie, and Y. Lin. A fast attribute reduction method for large

formal decision contexts. International Journal of Approximate Reasoning, 106:1 –
17, 2019.

[12] M. E. Cornejo, J. Medina, and E. Ramı́rez-Poussa. Attribute reduction in multi-
adjoint concept lattices. Information Sciences, 294:41 – 56, 2015.

[13] M. E. Cornejo, J. Medina, and E. Ramı́rez-Poussa. Attribute and size reduction
mechanisms in multi-adjoint concept lattices. Journal of Computational and Applied
Mathematics, 318:388 – 402, 2017.

[14] M. E. Cornejo, J. Medina, and E. Ramı́rez-Poussa. Characterizing reducts in multi-
adjoint concept lattices. Information Sciences, 422:364 – 376, 2018.

[15] B. Davey and H. Priestley. Introduction to Lattices and Order. Cambridge University
Press, second edition, 2002.

[16] B. Ganter and R. Wille. Formal Concept Analysis: Mathematical Foundation.
Springer Verlag, 1999.

[17] G. Grätzer. General Lattice Theory. Birkhäuser Basel, 2nd edition, 2007.
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[29] G. Vojvodić and B. Šešelja. On the lattice of weak congruence relations. algebra
universalis, 25(1):121–130, Dec 1988.
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