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Abstract

Bipolar fuzzy relation equations arise when unknown variables together with
their logical negations appear simultaneously in fuzzy relation equations.
This paper gives a characterization of the solvability of bipolar max-product
fuzzy (relation) equations with the standard negation. In addition, some
properties associated with the existence of the greatest/least solution or
maximal/minimal solutions are shown, when these (relation) equations are
solvable. Different examples are included in order to clarify the developed
theory.
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1. Introduction.

Situations and ideas with positive and negative effects are daily present
in any human being’s life. The principle behind any decision is a cautious
examination of pros and cons, that is, of positive and negative sides of
information. This inherent nature of human reasoning makes bipolarity a
desirable feature to be represented in intelligent technologies.

This manuscript deals with a special kind of bipolarity, in which posi-
tive and negative aspects of information are independently evaluated on a
single set of plausible values. In particular, negative aspects are precisely
determined from positive aspects by means of a negation operator. Accord-
ing to the three forms of bipolarity presented in [15], this work follows the
philosophy of type II bipolarity. Hence, our notion of bipolarity is somehow
associated with other frameworks in which type II bipolarity arises. Namely,
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type II bipolarity can be found in uncertainty theories dealing with incom-
plete information, such as belief and plausibility functions of Shafer [38],
possibility and necessity measures [14], and intuitionistic fuzzy sets [1].

Bipolar fuzzy relation equations were introduced in [17] as a generaliza-
tion of fuzzy relation equations (FREs) in which unknown variables appear
together with their logical negations simultaneously. Since its first defini-
tion in the 1980s by Elie Sanchez [35, 36], many papers have been published
on the resolution of FREs [9, 12, 13, 18, 21, 28, 31, 34]. In particular, essen-
tial results for solving max-product fuzzy relation equations can be found
in [2, 25, 30, 32].

As far as we know, the literature devoted to the resolution of bipolar
fuzzy relation equations is really limited. Bipolar fuzzy relation equations
based on max-min composition are studied in [22, 24] and those based on
max-product composition are analysed in [5, 6, 8]. There are also a few
papers which deal with the applicative perspective of bipolar equations and
all of them are related to optimization problems [17, 20, 42]. Hence, a
deeper study of these equations from different perspectives will be useful in
order to increase their flexibility and applicability in real cases.

This paper provides new advances with respect to the initial study about
bipolar max-product fuzzy equations with the standard negation, firstly pre-
sented by the authors in [5]. Hence, two of the most common and practical
operators have been considered: the product t-norm, which is also known
as the Goguen t-norm; and the standard negation, which coincides with the
residuated negation of the  Lukasiewicz t-norm. Notice that, the product
t-norm has particularly interesting properties, giving rise to successful ap-
plications in the literature, for instance, [16, 37]. On the other hand, the
standard negation and involutive negations in general, have a great interest
in the theory [3, 4, 7] and in the applications [10, 11, 19].

We will start this paper in Section 2 including the definition of bipolar
max-product fuzzy equation with the standard negation containing differ-
ent unknown variables. The technical results related to the existence of the
greatest/least solution or a finite number of maximal/minimal solutions for
solvable bipolar equations will also be provided. It is important to mention
that this study will also consider bipolar equations whose independent term
is equal to zero, complementing the results given in [5]. Then, in Section 3,
a characterization for the solvability of an arbitrary bipolar max-product
fuzzy relation equation with the standard negation will be introduced. Dif-
ferent properties related to the existence and the analytical description of
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the maximal and minimal solutions of an arbitrary bipolar max-product
fuzzy relation equation are given in Section 4. Finally, this paper finishes
in Section 5 with some conclusions and prospects for future work.

2. Bipolar max-product fuzzy equations with the standard nega-
tion

This section carries out a study on the solvability of bipolar fuzzy equa-
tions based on the max-product t-norm composition and the standard nega-
tion. Specifically, the standard negation n : [0, 1] → [0, 1] is defined as
n(x) = 1 − x, for each x ∈ [0, 1]. First of all, we will show the sufficient
and necessary conditions which guarantee that bipolar max-product fuzzy
equations containing different unknown variables are solvable. The follow-
ing step of our study will consist in knowing when solvable bipolar fuzzy
equations have a greatest (least, respectively) solution or a finite number of
maximal (minimal, respectively) solutions.

Next, we will introduce formally the definition of bipolar max-product
fuzzy equation with the standard negation, and the characterization theo-
rem on its solvability. From now on, let us fix m ∈ N and a+j , a

−
j , b ∈ [0, 1],

with j ∈ {1, . . . ,m}.

Definition 1. Let xj ∈ [0, 1] be an unknown value, for each j ∈ {1, . . . ,m},
∗ the product t-norm and ∨ the maximum operator. Equation (1) is called
bipolar max-product fuzzy equation with the standard negation.

m∨
j=1

(a+j ∗ xj) ∨ (a−j ∗ (1− xj)) = b (1)

The corresponding max-product fuzzy equation of Equation (1) is defined as

m∨
j=1

(a+j ∗ xj) ∨ (a−j ∗ yj) = b (2)

where xj, yj ∈ [0, 1] are unknown values, for each j ∈ {1, . . . ,m}.

Notice that, if a+j = a−j = 0 for a given j ∈ {1, . . . ,m}, then we can
remove the unknown value xj from the equation, since it may take any value
in [0, 1]. Hence, hereinafter, we assume that either a+j 6= 0 or a−j 6= 0 for
each j ∈ {1, . . . ,m}.
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The following result was advanced in [5], without proof, and presents
a characterization of the solvability of these equations. Specifically, it es-
tablishes that Equation (1) is solvable if and only if the components of the
greatest solution of its corresponding max-product fuzzy equation verifies a
certain inequality.

Theorem 2. The bipolar max-product fuzzy equation (1) is solvable if and
only if its corresponding max-product fuzzy equation (2) is solvable and the
inequality 1 ≤ x̄j+ȳj holds, for all j ∈ {1, . . . ,m}, where (x̄1, ȳ1, . . . , x̄m, ȳm) ∈
[0, 1]2m is its greatest solution.

Proof. Supposing that 1 ≤ x̄j + ȳj, for each j ∈ {1, . . . ,m}, we will prove
that Equation (1) is solvable. In order to reach this conclusion, consider
the tuple (x̂1, . . . , x̂m) defined as:

x̂j =

{
1− ȳj if a−j ∗ ȳj = b
x̄j otherwise

for each j ∈ {1, . . . ,m}. We will see that (x̂1, . . . , x̂m) is a solution of
Equation (1).

Clearly, the tuple (x̄1, ȳ1, . . . , x̄m, ȳm) being a solution of Equation (2)
implies that either there exists k ∈ {1, . . . ,m} such that a+k ∗ x̄k = b, or
there exists k ∈ {1, . . . ,m} such that a−k ∗ ȳk = b (clearly, both cases are also
possible at the same time). On the one hand, if there exists k ∈ {1, . . . ,m}
such that a−k ∗ ȳk = b, then by definition x̂k = 1 − ȳk. Observe that, as
(x̄1, ȳ1, . . . , x̄m, ȳm) is a solution of Equation (2), the inequality a+k ∗ x̄k ≤ b
is verified. Since 1 ≤ x̄k + ȳk by hypothesis, or equivalently 1− ȳk ≤ x̄k, we
obtain that the following chain of inequalities holds:

a+k ∗ x̂k = a+k ∗ (1− ȳk) ≤ a+k ∗ x̄k ≤ b

Consequently, we have that:

(a+k ∗ x̂k) ∨ (a−k ∗ (1− x̂k)) = b

On the other hand, suppose that there exists k ∈ {1, . . . ,m} such that
a+k ∗ x̄k = b and a−k ∗ ȳk 6= b. Notice that, if a−k ∗ ȳk = b, then we are in
the previous case. By definition, x̂k = x̄k, and due to (x̄1, ȳ1, . . . , x̄m, ȳm) is
a solution of Equation (2), we obtain that a−k ∗ ȳk ≤ b. As a consequence,
from the inequality 1 ≤ x̄k + ȳk, or equivalently 1− x̄k ≤ ȳk, we can assert
that:

a−k ∗ (1− x̂k) = a−k ∗ (1− x̄k) ≤ a−k ∗ ȳk ≤ b
4



As a result, we obtain that:

(a+k ∗ x̂k) ∨ (a−k ∗ (1− x̂k)) = b

In order to demonstrate that (x̂1, . . . , x̂m) is a solution of Equation (1), it
remains to see that the next inequality holds, for each j ∈ {1, . . . ,m} with
j 6= k:

(a+j ∗ x̂j) ∨ (a−j ∗ (1− x̂j)) ≤ b

Given j ∈ {1, . . . ,m} with j 6= k, we will consider two cases: if a−j ∗ ȳj = b,
then following an analogous reasoning to the previous one x̂j = 1− ȳj, and
hence:

(a+j ∗ x̂j) ∨ (a−j ∗ (1− x̂j)) = b

On the contrary, if a−j ∗ȳj 6= b, then by definition x̂j = x̄j. Since (x̄1, ȳ1, . . . , x̄m, ȳm)
is a solution of Equation (2), the inequalities a+j ∗ x̄j ≤ b and a−j ∗ ȳj < b
hold. As a result, taking into account that 1 ≤ x̄j + ȳj by hypothesis, we
can conclude that the following chain is satisfied:

(a+j ∗ x̂j)∨(a−j ∗(1− x̂j)) = (a+j ∗ x̄j)∨(a−j ∗(1− x̄j)) ≤ (a+j ∗ x̄j)∨(a−j ∗ ȳj) ≤ b

Therefore, (x̂1, . . . , x̂m) is a solution of Equation (1).
In order to prove the other implication, we will assume that there exists

j ∈ {1, . . . ,m} such that x̄j + ȳj < 1 and let us see that Equation (1) is not
solvable. For that, we will suppose that there exists a solution (x̂1, . . . , x̂m)
of Equation (1), and we will obtain a contradiction.

Clearly, as (x̂1, . . . , x̂m) is a solution of Equation (1), then the tuple
(x̂1, 1 − x̂1, . . . , x̂m, 1 − x̂m) forms a solution of Equation (2). Moreover,
since the tuple (x̄1, ȳ1, . . . , x̄m, ȳm) is the greatest solution of Equation (2),
we obtain that, in particular, x̂j ≤ x̄j and 1 − x̂j ≤ ȳj. Therefore, the
following chain of inequalities holds 1 ≤ x̂j + ȳj ≤ x̄j + ȳj. This fact leads
us to a contradiction, due to x̄j + ȳj < 1 by hypothesis. Consequently,
we can conclude that Equation (1) is solvable if and only if the inequality
1 ≤ x̄j + ȳj holds, for all j ∈ {1, . . . ,m}. �

Notice that, if there exists k ∈ {1, . . . ,m} satisfying the equalities a+k ∗
x̄k = b and a−k ∗ ȳk = b, then the tuple (x̂1, . . . , x̂k−1, (1 − ȳk), x̂k+1, x̂m) is
also a solution of Equation (1). In addition, we know that this solution
is smaller than the solution obtained in the proof of Theorem 2 since, by
hypothesis, (1− ȳi) ≤ x̄i, for each i ∈ {1, . . . ,m}.
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Although the algebraic structure corresponding to the complete solution
set of Equation (1) has been studied in [5] as well, the case in which the
independent term is equal to zero was not considered. It is important to
highlight that, if b = 0, then the solution set of Equation (1) has a simple
structure. Indeed, in that case, the solvability of Equation (1) can be char-
acterized by means of the values of the coefficients a+j and a−j , as the next
proposition shows.

Proposition 3. The bipolar max-product fuzzy equation

m∨
j=1

(a+j ∗ xj) ∨ (a−j ∗ (1− xj)) = 0 (3)

is solvable if and only if, for each j ∈ {1, . . . ,m}, either a+j = 0 or a−j = 0.

Proof. On the one hand, suppose that, for each j ∈ {1, . . . ,m}, either
a+j = 0 or a−j = 0. It is important to highlight that a+j and a−j cannot
be zero simultaneously, since in such case the unknown value xj can be
removed from the equation. Clearly, the tuple (x̂1, . . . , x̂m) given by

x̂j =

{
1 if a+j = 0
0 if a−j = 0

is straightforwardly a solution of Equation (3).
On the other hand, assume that Equation (3) is solvable and the tu-

ple (x̂1, . . . , x̂m) is a solution of Equation (3). We will suppose that there
exists k ∈ {1, . . . ,m} such that a+k > 0 and a−k > 0 and we will obtain a
contradiction. We will distinguish two cases:

• If xk = 0, then the chain of inequalities below holds:

m∨
j=1

(a+j ∗ xj) ∨ (a−j ∗ (1− xj)) ≥ (a−k ∗ (1− xk)) = a−k > 0

which contradicts that (x̂1, . . . , x̂m) is a solution of Equation (3).

• If xk > 0, we obtain the same strict inequality:

m∨
j=1

(a+j ∗ xj) ∨ (a−j ∗ (1− xj)) ≥ (a+k ∗ xk) > 0

which also contradicts (x̂1, . . . , x̂m) is a solution of Equation (3).
6



Thus, we can ensure that either the equality a+j = 0 or a−j = 0 holds, for all
j ∈ {1, . . . ,m}. �

Proposition 3 leads us to assert that if Equation (3) is solvable then
there is only one solution. This result is formalized in the next proposition.

Proposition 4. If Equation (3) is solvable, then the tuple (x̂1, . . . , x̂m) de-
fined as:

x̂j =

{
1 if a+j = 0
0 if a−j = 0

for each j ∈ {1, . . . ,m}, is the unique solution of Equation (3).

Proof. First of all, taking into account Proposition 3, we can assert that
the tuple (x̂1, . . . , x̂m) defined as

x̂j =

{
1 if a+j = 0
0 if a−j = 0

for each j ∈ {1, . . . ,m} is well-defined. Additionally, following an analogous
reasoning to the proof given to Proposition 3, we obtain that (x̂1, . . . , x̂m)
is a solution of Equation (3).

Now, suppose that it is not its unique solution. As a consequence,
there exists a solution (x1, . . . , xm) of Equation (3) such that (x1, . . . , xm) 6=
(x̂1, . . . , x̂m). Thus, one of the following statements holds:

(a) there exists k ∈ {1, . . . ,m} satisfying x̂k < xk.

(b) there exists k ∈ {1, . . . ,m} satisfying xk < x̂k.

On the one hand, suppose that (a) is verified. If a+k = 0 then x̂k = 1, by
definition. Since xk ∈ [0, 1], the inequality xk ≤ x̂k holds, which contradicts
(a). As a consequence, a+k > 0 and this fact implies that 0 = x̂k < xk.
These two inequalities lead us to the following chain:

0 < a+k ∗ xk ≤ (a+k ∗ xk) ∨ (a−k ∗ (1− xk))

Hence, (x1, . . . , xm) is not a solution of Equation (3) in contradiction with
the hypothesis. On the other hand, if (b) holds, a dual process leads us
to a contradiction. Therefore, we conclude that (x̂1, . . . , x̂m) is the unique
solution of Equation (3). �
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In the following, we will show under what conditions a bipolar max-
product fuzzy equation, defined with the standard negation and whose
independent term is different from zero, has either a greatest (least, re-
spectively) solution or a finite number of maximal (minimal, respectively)
solutions. This result was previously advanced in [5] without proof.

Theorem 5. Let Equation (1) be solvable, b 6= 0 and (x̄1, ȳ1, . . . , x̄m, ȳm) ∈
[0, 1]2m be the greatest solution of its corresponding max-product fuzzy equa-
tion (2). The following statements hold:

(a) If there exists some k ∈ {1, . . . ,m} such that a+k ∗ x̄k = b, the solution
set of Equation (1) has a greatest element.

(b) If a+j ∗ x̄j 6= b, for all j ∈ {1, . . . ,m}, then the set of maximal solutions
of Equation (1) is finite. Moreover, the number of maximal solutions
is:

card({k ∈ {1, . . . ,m} | a−k ∗ ȳk = b})

(c) If there exists some k ∈ {1, . . . ,m} such that a−k ∗ ȳk = b, the solution
set of Equation (1) has a least element.

(d) If a−j ∗ ȳj 6= b, for all j ∈ {1, . . . ,m}, then the set of minimal solutions
of Equation (1) is finite. Moreover, the number of minimal solutions
is:

card({k ∈ {1, . . . ,m} | a+k ∗ x̄k = b})

Proof. (a). Suppose that there exists k ∈ {1, . . . ,m} such that a+k ∗x̄k = b,
and we will demonstrate that the tuple (x̄1, . . . , x̄m) is the greatest solution
of Equation (1). Clearly, as (x̄1, ȳ1, . . . , x̄m, ȳm) is a solution of Equation (2),
the inequalities a+j ∗ x̄j ≤ b and a−j ∗ ȳj ≤ b are verified, for each j ∈
{1, . . . ,m}. Moreover, because 1 ≤ x̄j + ȳj, for all j ∈ {1, . . . ,m}, and
∗ is an order-preserving operator, we can assert that a−j ∗ (1 − x̄j) ≤ b.
Accordingly to the previous inequalities and the fact that a+k ∗ x̄k = b, we
conclude that

m∨
j=1

(a+j ∗ x̄j) ∨ (a−j ∗ (1− x̄j)) = b

In other words, (x̄1, . . . , x̄m) is a solution of Equation (1).
In order to demonstrate that (x̄1, . . . , x̄m) is the greatest solution of

Equation (1), we will proceed by reductio ad absurdum. Therefore, suppose
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that there exists a solution (x1, . . . , xm) of Equation (1) such that x̄k < xk

for some k ∈ {1, . . . ,m}, and we will obtain a contradiction. Observe
that, since (x1, . . . , xm) is a solution of Equation (1), the tuple (x1, 1 −
x1, . . . , xm, 1 − xm) is straightforwardly a solution of Equation (2). As a
consequence, taking into account that (x̄1, ȳ1, . . . , x̄m, ȳm) is the greatest
solution of Equation (2), we deduce that, in particular, xk ≤ x̄k. Which is
in contradiction with the hypothesis.

Hence, we can conclude that (x̄1, . . . , x̄m) is the greatest solution of
Equation (1).

(b). Now, we suppose that a+j ∗ x̄j 6= b for all j ∈ {1, . . . ,m}. First
of all, notice that we can assert that a+j ∗ x̄j < b, for all j ∈ {1, . . . ,m},
since (x̄1, ȳ1, . . . , x̄m, ȳm) is a solution of Equation (2). Furthermore, as
(x̄1, ȳ1, . . . , x̄m, ȳm) is the greatest solution of Equation (2) and ∗ is contin-
uous in [0, 1], we obtain that x̄j = 1, for all j ∈ {1, . . . ,m}.

In order to demonstrate Statement (b), consider the set A = {k ∈
{1, . . . ,m} | a−k ∗ȳk = b}, the set B of maximal solutions of Equation (1) and
the mapping f : A→ B defined as f(k) = (x̄1, . . . , x̄k−1, 1−ȳk, x̄k+1, . . . , x̄m),
for all k ∈ A. In the sequel, we will see that f forms a bijection between A
and B.

Firstly, we will see that f is well-defined. Following an analogous rea-
soning to the proof in Theorem 2, for each k ∈ A, we obtain that the tuple
f(k) = (x̄1, . . . , x̄k−1, 1 − ȳk, x̄k+1, . . . , x̄m) is a solution of Equation (1).
Additionally, it can be easily verified that it is a maximal solution. Specifi-
cally, suppose that there exists a solution (x1, . . . , xm) of Equation (1) such
that f(k) < (x1, . . . , xm). As x̄j = 1 for all j ∈ {1, . . . ,m}, we have that
xj = 1, for all j ∈ {1, . . . ,m}, with j 6= k, and 1− ȳk < xk, or equivalently
1− xk < ȳk.

On the one hand, according to the fact that k ∈ A and due to ∗ is an
order-preserving mapping, the following inequality a−k ∗(1−xk) < a−k ∗ȳk = b
is satisfied. In addition, since (x1, . . . , xm) is a solution of Equation (1), we
have that the tuple (x1, 1−x1, . . . , xm, 1−xm) is a solution of Equation (2).
Taking into account that (x̄1, ȳ1, . . . , x̄m, ȳm) is the greatest solution of Equa-
tion (2), we obtain that xk ≤ x̄k. As a result, a+k ∗ xk ≤ a+k ∗ x̄k < b and
thus (a+k ∗ xk) ∨ (a−k ∗ (1− xk)) < b.

On the other hand, for each j ∈ {1, . . . ,m} with j 6= k, as xj = x̄j = 1
and a+j ∗ x̄j < b by hypothesis, we can assert that:

(a+j ∗ xj) ∨ (a−j ∗ (1− xj)) = (a+j ∗ xj) ∨ (a−j ∗ 0) = a+j ∗ xj = a+j ∗ x̄j < b
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Hence, since m is finite, we obtain the inequality:

m∨
j=1

(a+j ∗ xj) ∨ (a−j ∗ (1− xj)) < b

which contradicts the hypothesis of (x1, . . . , xm) being a solution of Equa-
tion (1).

We can assert then that the mapping f is well-defined. In order to
see that f is order-embedding, let k1, k2 ∈ A with k1 6= k2. Notice that,
f(k1) = f(k2) if and only if x̄k1 = 1− ȳk2 and x̄k2 = 1− ȳk1 . Nevertheless,
this is not possible due to x̄j = 1 for each j ∈ {1, . . . ,m} and b 6= 0. In
particular, the following chain would hold:

a−k1 ∗ ȳk1 = a−k1 ∗ (1− x̄k2) = a−k1 ∗ 0 = 0 6= b

Thus, k1 /∈ A, in contradiction with the hypothesis. Consequently, we
conclude that f(k1) 6= f(k2) for each k1, k2 ∈ A with k1 6= k2. That is, f is
an order-embedding mapping.

To conclude with this demonstration, we will see that f is onto. Given
(x̂1, . . . , x̂m) ∈ B, that is, a maximal solution of Equation (1), clearly
the tuple (x̂1, 1 − x̂1, . . . , x̂m, 1 − x̂m) is a solution of Equation (2). Since
(x̄1, ȳ1, . . . , x̄m, ȳm) is the greatest solution of Equation (2), we obtain that
x̂j ≤ x̄j and 1− x̂j ≤ ȳj for each j ∈ {1, . . . ,m}. Therefore, taking into ac-
count that ∗ is an order-preserving mapping and a+j ∗ x̄j < b by hypothesis,
a+j ∗ x̂j ≤ a+j ∗ x̄j < b. As a consequence, we can ensure that there exists
k ∈ {1, . . . ,m} such that a−k ∗ (1 − x̂k) = b. Moreover, since 1 − x̂k ≤ ȳk,
the expression b = a−k ∗ (1− x̂k) ≤ a−k ∗ ȳk is satisfied. As a result, from the
fact that (x̄1, ȳ1, . . . , x̄m, ȳm) is a solution of Equation (2), we deduce that
a−k ∗ ȳk = b, and thus k ∈ A by definition. In the sequel, we will see that
f(k) = (x̂1, . . . , x̂m).

Notice that ∗ is a strictly order-preserving mapping and a−k 6= 0, and
therefore the expression a−k ∗ (1 − x̂k) = a−k ∗ ȳk implies that 1 − x̂k = ȳk.
Equivalently, x̂k = 1−ȳk. Hence, in order to prove that f(k) = (x̂1, . . . , x̂m),
it remains to show that x̂j = x̄j for all j ∈ {1, . . . ,m}, with j 6= k.

Given j ∈ {1, . . . ,m} \ {k}, since a−k ∗ (1 − x̂k) = b and x̂j ≤ x̄j = 1,
the value of x̂j in the expression a−j ∗ (1 − x̂j) can be as great as possible,
maintaining the solvability of the equation. Thus, we have that x̂j = 1 = x̄j.

Hence, we conclude that f forms a bijection between A and B, an there-
fore the number of maximal solution of Equation (1) coincides with the
cardinal of A, as we want to demonstrate.
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(c). Assume that there exists some k ∈ {1, . . . ,m} such that a−k ∗ ȳk = b.
Following a dual reasoning to the proof of Statement (a), we can easily
demonstrate that the tuple (1 − ȳ1, . . . , 1 − ȳm) is the least solution of
Equation (1).

(d). Now, suppose that a−j ∗ ȳj 6= b, for each j ∈ {1, . . . ,m}. Let
A = {k ∈ {1, . . . ,m} | a+k ∗ x̄k = b}, let B be the set of maximal solutions of
Equation (1), and consider the mapping f : A→ B defined as f(k) = (1−
ȳ1, . . . , 1−ȳk−1, x̄k, 1−ȳk+1, . . . , 1−ȳm), for each k ∈ A. By a dual reasoning
to the proof of Statement (b), we obtain that f forms a bijection between
A and B, and therefore the number of elements of both sets coincide. �

A direct consequence of the proof of Theorem 5 is that we can obtain the
analytical description of the maximal and minimal solutions of a solvable
bipolar max-product fuzzy equation, as the following corollary shows.

Corollary 6. Let Equation (1) be solvable, b 6= 0 and (x̄1, ȳ1, . . . , x̄m, ȳm) ∈
[0, 1]2m be the greatest solution of its corresponding max-product fuzzy equa-
tion (2).

(a) If there exists some k ∈ {1, . . . ,m} such that a+k ∗ x̄k = b, then
(x̄1, . . . , x̄m) is the greatest solution of Equation (1).

(b) If a+j ∗ x̄j 6= b, for each j ∈ {1, . . . ,m}, then the set of maximal
solutions of Equation (1) is finite. The set of maximal solutions of
Equation (1) is given by:

{(x̄1, . . . , x̄k−1, 1− ȳk, x̄k+1, . . . , x̄m) | k ∈ K−P }

where K−P = {k ∈ {1, . . . ,m} | a−k ∗ ȳk = b}.

(c) If there exists some k ∈ {1, . . . ,m} such that a−k ∗ ȳk = b, then (1 −
ȳ1, . . . , 1− ȳm) is the least solution of Equation (1).

(d) If a−j ∗ ȳj 6= b, for each j ∈ {1, . . . ,m}, then the set of minimal
solutions of Equation (1) is finite. The set of minimal solutions of
Equation (1) is given by:

{(1− ȳ1, . . . , 1− ȳk−1, x̄k, 1− ȳk+1, . . . , 1− ȳm) | k ∈ K+
P }

where K+
P = {k ∈ {1, . . . ,m} | a+k ∗ x̄k = b}.
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The results presented in this section will be illustrated in the following
example.

Example 7. We will consider the bipolar max-product fuzzy equation
given by Equation (4), which contains two unknown variables:

(0.8 ∗ x1) ∨ (0.1 ∗ (1− x1)) ∨ (0.5 ∗ x2) ∨ (0.4 ∗ (1− x2)) = 0.4 (4)

According to the theoretical results presented in [13, 28, 33], we obtain that
the greatest solution of its corresponding max-product fuzzy equation:

(0.8 ∗ x1) ∨ (0.1 ∗ y1) ∨ (0.5 ∗ x2) ∨ (0.4 ∗ y2) = 0.4

is (0.5, 1, 0.8, 1). Taking into account that the inequalities 1 ≤ 0.5 + 1 and
1 ≤ 0.8 + 1 are satisfied, Theorem 2 leads us to assert that Equation (4) is
solvable.

Notice that the equality 0.8 ∗ 0.5 = 0.4 holds. Applying the Statement
(a) in Theorem 5, we conclude that Equation (4) has a greatest solution.
Specifically, according to Corollary 6, the greatest solution of Equation (4)
is (0.5, 0.8). Similarly, from the equality 0.4∗1 = 0.4 and the Statement (c)
in Theorem 5 and Corollary 6, we obtain that Equation (4) also has a least
solution, which is given by the tuple (0, 0).

Now, we will modify the coefficient which multiplies to the variable
(1− x2) obtaining a new bipolar max-product fuzzy equation:

(0.8 ∗ x1) ∨ (0.1 ∗ (1− x1)) ∨ (0.5 ∗ x2) ∨ (0.3 ∗ (1− x2)) = 0.4 (5)

Once again, by using the results included in [13, 28, 33], we obtain that the
greatest solution of its corresponding max-product fuzzy equation

(0.8 ∗ x1) ∨ (0.1 ∗ y1) ∨ (0.5 ∗ x2) ∨ (0.3 ∗ y2) = 0.4

is (0.5, 1, 0.8, 1). Clearly, the hypothesis required in Theorem 2 are satisfied
and hence, Equation (5) is solvable. In this case, we obtain that 0.8 ∗
0.5 = 0.4, but 0.1 ∗ 1 6= 0.4 and 0.3 ∗ 1 6= 0.4. Therefore, taking into
account Statements (a) and (d) in Theorem 5, we conclude that Equation (5)
has a greatest solution and a finite set of minimal solutions. Specifically,
Equation (5) has two minimal solutions since the cardinality of the set
{j ∈ {1, 2} | a+j ∗ x̄j = b} is 2. Corollary 6 allows us to conclude that
(0.5, 0.8) is the greatest solution of Equation (5), whilst (0.5, 0) and (0, 0.8)
are its minimal solutions. �
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Observe that, although the tuples (0.5, 0.8) and (0, 0) are the greatest
and the least solution of Equation (4), respectively, this does not mean that
any tuple between (0.5, 0.8) and (0, 0) is a solution of Equation (4). For
instance, (0.4, 0.5) is not a solution of Equation (4), as shown below

(0.8 ∗ 0.4) ∨ (0.1 ∗ (1− 0.4)) ∨ (0.5 ∗ 0.5) ∨ (0.4 ∗ (1− 0.5)) = 0.32 6= 0.4

Therefore, in general, the solutions of a bipolar max-product fuzzy equation
are bounded by the maximal and minimal solutions of the equation, but
they are not completely determined by them. The computation of the
whole solution set of a bipolar max-product fuzzy equation will be one of
the main prospects for future work.

3. Bipolar max-product fuzzy relation equations with the stan-
dard negation

According to the previous section, one can think that the conditions to
ensure the solvability of bipolar max-product fuzzy equation systems with
the standard negation will be the same as the one given in Theorem 2.
However, this fact is not true in general, as it is shown in the following
example. If we consider the next system composed of two max-product
fuzzy equations with two unknown variables x and y:

(0.5 ∗ x) ∨ (0.2 ∗ y) = 0.5

(0.1 ∗ x) ∨ (0.8 ∗ y) = 0.4

we can easily see that there is only one solution, that is, (x̄, ȳ) = (1, 0.5).
As a consequence, the unique possible solutions of the system of bipolar
max-product fuzzy equations associated with the previous one:

(0.5 ∗ x) ∨ (0.2 ∗ (1− x)) = 0.5

(0.1 ∗ x) ∨ (0.8 ∗ (1− x)) = 0.4

are 1 and (1− 0.5) = 0.5. Nevertheless, the values 1 and (1− 0.5) = 0.5 are
not solutions of this system of bipolar max-product fuzzy equations. Notice
that, the value 1 does not satisfy the second equation and the value 0.5 does
not satisfy the first one, that is:

(0.5 ∗ 0.5) ∨ (0.2 ∗ (1− 0.5)) = 0.25 ∨ 0.1 = 0.25 6= 0.5

(0.1 ∗ 1) ∨ (0.8 ∗ (1− 1)) = 0.1 ∨ 0 = 0.1 6= 0.4
13



Therefore, since the condition 1 ≤ 1+0.5 is satisfied, we conclude that extra
conditions need to be required in order to guarantee the solvability of a
system of bipolar max-product fuzzy equations with the standard negation.
These systems are interpreted as a fuzzy relation equation (FRE), as usual.

From now on, we consider fixed m,n ∈ N, and a+ij, a
−
ij, bi ∈ [0, 1], with

i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}.

Definition 8. Let xj ∈ [0, 1] be an unknown value, for each j ∈ {1, . . . ,m},
∗ the product t-norm and ∨ the maximum operator. Equation (6) is called
bipolar max-product fuzzy relation equation with the standard negation.

m∨
j=1

(a+ij ∗ xj) ∨ (a−ij ∗ (1− xj)) = bi, i ∈ {1, . . . , n} (6)

The corresponding max-product fuzzy relation equation of Equation (6) is
given by

m∨
j=1

(a+ij ∗ xj) ∨ (a−ij ∗ yj) = bi, i ∈ {1, . . . , n} (7)

where xj, yj ∈ [0, 1] are unknown values, for each j ∈ {1, . . . ,m}.

The next lemma shows two inequalities under which, given a solution of a
bipolar max-product FRE, a greater or a smaller solution can be obtained,
respectively. This result will be crucial in the study of the maximal and
minimal solutions of an arbitrary bipolar max-product FRE.

Lemma 9. Let (x1, . . . , xm) be a solution of the bipolar max-product FRE (6)
and (x̄1, ȳ1, . . . , x̄m, ȳm) ∈ [0, 1]2m be the greatest solution of its correspond-
ing max-product FRE (7). The following statements hold:

(a) If there exists k ∈ {1, . . . ,m} such that 1 − ȳk < xk, then the tuple
(x1, . . . , xk−1, x̄k, xk+1, . . . , xm) is also a solution of Equation (6).

(b) If there exists k ∈ {1, . . . ,m} such that xk < x̄k, then the tuple
(x1, . . . , xk−1, 1− ȳk, xk+1, . . . , xm) is also a solution of Equation (6).

Proof. Suppose that there exists k ∈ {1, . . . ,m} such that 1 − ȳk < xk,
and we will prove that Statement (a) holds. Since (x1, . . . , xm) is a solu-
tion of Equation (6), the tuple (x1, 1 − x1, . . . , xm, 1 − xm) is a solution
of Equation (7). Therefore, as (x̄1, ȳ1, . . . , x̄m, ȳm) is the greatest solution
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of Equation (7), we can assert that xk ≤ x̄k. Clearly, if xk = x̄k, then
Statement (a) straightforwardly holds. Thus, we assume that xk < x̄k.

Given i ∈ {1, . . . , n}, we will prove that the tuple (x1, . . . , xk−1, x̄k, xk+1, . . . , xm)
satisfies the i-th equation in Equation (6). First of all, we consider the triv-
ial case bi = 0. On the one hand, as 1 ≤ x̄k + ȳk, and (x̄1, ȳ1, . . . , x̄m, ȳm) is
a solution of Equation (7), we have that

(a+ik ∗ x̄k) ∨ (a−ik ∗ (1− x̄k)) ≤ (a+ik ∗ x̄k) ∨ (a−ik ∗ ȳk) = 0

On the other hand, since the tuple (x1, 1 − x1, . . . , xm, 1 − xm) is also a
solution of Equation (7), we can assert that:

(a+ij ∗ xj) ∨ (a−ij ∗ (1− xj)) = 0

for all j ∈ {1, . . . ,m}. Therefore, (x1, . . . , xk−1, x̄k, xk+1, . . . , xm) is also a
solution of the i-th equation in Equation (6).

Now, we have that bi 6= 0, that is, bi ∈ ]0, 1]. Notice that, if a+ik = a−ik = 0,
as (x̄1, ȳ1, . . . , x̄m, ȳm) is a solution of Equation (7), we obtain that

(a+ik ∗ xk) ∨ (a−ik ∗ (1− xk)) = (a+ik ∗ x̄k) ∨ (a−ik ∗ ȳk) = 0 < bi

Otherwise, if a+ik 6= 0 or a−ik 6= 0, taking into account that ∗ is a strictly order-
preserving mapping, (x̄1, ȳ1, . . . , x̄m, ȳm) is a solution of Equation (7) and
1− ȳk < xk, or equivalently 1− xk < ȳk, the following chain of inequalities
is verified:

(a+ik ∗ xk) ∨ (a−ik ∗ (1− xk)) < (a+ik ∗ x̄k) ∨ (a−ik ∗ ȳk) ≤ bi

As a consequence of both cases, since a finite number of variables is consid-
ered, [0, 1] is totally ordered and (x1, . . . , xm) is a solution of Equation (6),
that is

m∨
j=1

(a+ij ∗ xj) ∨ (a−ij ∗ (1− xj)) = bi

we can assert that there exists j′ ∈ {1, . . . ,m} with j′ 6= k such that

(a+ij′ ∗ xj′) ∨ (a−ij′ ∗ (1− xj′)) = bi

and clearly, for each j ∈ {1, . . . ,m}, it is

(a+ij ∗ xj) ∨ (a−ij ∗ (1− xj)) ≤ bi
15



Hence, in order to prove that the tuple (x1, . . . , xk−1, x̄k, xk+1, . . . , xm) forms
a solution of the i-th equation in Equation (6), it is sufficient to see that

(a+ij ∗ x̄k) ∨ (a−ij ∗ (1− x̄k)) ≤ bi

But this fact is trivial due to (x̄1, ȳ1, . . . , x̄m, ȳm) is a solution of Equa-
tion (7), and that xk < x̄k. According to the fact that i is an arbitrary
element in {1, . . . , n}, we conclude that (x1, . . . , xk−1, x̄k, xk+1, . . . , xm) is a
solution of Equation (6). Therefore, Statement (a) is proved. Furthermore,
following a dual reasoning, Statement (b) is straightforwardly satisfied. �

As a result of this lemma, the following corollary can be easily obtained.

Corollary 10. Let (x1, . . . , xm) be a solution of the bipolar max-product
FRE (6) and (x̄1, ȳ1, . . . , x̄m, ȳm) ∈ [0, 1]2m be the greatest solution of its
corresponding max-product FRE (7). The following statements hold:

(a) The tuple (x̂1, . . . , x̂m) given by x̂j = xj if xj = 1 − ȳj and x̂j = x̄j

otherwise, is also a solution of Equation (6).

(b) The tuple (x̂1, . . . , x̂m) given by x̂j = xj if xj = x̄j and x̂j = 1 − ȳj
otherwise, is also a solution of Equation (6).

Proof. Statement (a) (respectively Statement (b)) can straightforwardly
be deduced applying Statement (a) (respectively Statement (b)) in Lemma 9
for each k ∈ {1, . . . ,m} such that 1− ȳk < xk (respectively xk < x̄k). �

In order to present a characterization on the resolution of a bipolar max-
product FRE, we will introduce the notion of feasible pair of index sets.

Definition 11. Let (x̄1, ȳ1, . . . , x̄m, ȳm) ∈ [0, 1]2m be the greatest solu-
tion of a solvable max-product FRE (7). A pair of index sets (J+, J−) ⊆
{1, . . . ,m}2 is said to be feasible with respect to Equation (7) if x̄j + ȳj = 1,
for each j ∈ J+ ∩ J−, and one of the following statements hold, for each
i ∈ {1, . . . , n}:

(a) There exists j ∈ J+ such that a+ij ∗ x̄j = bi.

(b) There exists j ∈ J− such that a−ij ∗ ȳj = bi.

The following example illustrates the concept of feasible pair.
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Example 12. Consider the next max-product FRE

(0.1 ∗ x1) ∨ (0.3 ∗ y1) ∨ (0.25 ∗ x2) ∨ (0.3 ∗ y2) ∨ (0.4 ∗ x3) ∨ (0.4 ∗ y3) = 0.2
(0.1 ∗ x1) ∨ (0.8 ∗ y1) ∨ (0.3 ∗ x2) ∨ (0.6 ∗ y2) ∨ (0.3 ∗ x3) ∨ (0.5 ∗ y3) = 0.4
(0.3 ∗ x1) ∨ (0.8 ∗ y1) ∨ (0.4 ∗ x2) ∨ (0.5 ∗ y2) ∨ (0.8 ∗ x3) ∨ (0.8 ∗ y3) = 0.4

(8)

whose greatest solution is the tuple (x̄1, ȳ1, x̄2, ȳ2, x̄3, ȳ3) = (1, 0.5, 0.8, 0.6̂, 0.5, 0.5).
For more details on how to compute the greatest solution of a FRE, see [21,
28, 30].

We will see that the index sets J+ = {2} and J− = {1, 3} form a feasible
pair with respect to Equation (8). Observe that, J+ ∩ J− = ∅.

• Case i = 1 (first equation): we obtain that 2 ∈ J+ verifies the equality
a+12 ∗ x̄2 = 0.25 ∗ 0.8 = 0.2 = b1.

• Case i = 2 (second equation): we have that 1 ∈ J− satisfies the
equality a−21 ∗ ȳ1 = 0.8 ∗ 0.5 = 0.4 = b2.

• Case i = 3 (third equation): we obtain that 3 ∈ J− verifies the
equality a−33 ∗ ȳ3 = 0.8 ∗ 0.5 = 0.4 = b3.

Hence, the pair (J+, J−) forms a feasible pair with respect to Equation (8).
�

The reader may realize that the intuition behind the notion of feasible
pair is unquestionably close to the concept of covering [23, 27]. Indeed,
the concept of feasible pair follows the philosophy of the covering problem
for the case of bipolar fuzzy relation equations. Therefore, the definition
of feasible pair can be seen as a modification of the concept of covering in
order to consider the bipolar framework.

The proposition below presents a useful property of feasible pairs. Specif-
ically, given a feasible pair (J+, J−), we can obtain new feasible pairs adding
to, either J+ or J−, any index k ∈ {1, . . . ,m} satisfying the equality
x̄k + ȳk = 1.

Proposition 13. Let m ∈ N, (x̄1, ȳ1, . . . , x̄m, ȳm) ∈ [0, 1]2m be the greatest
solution of a solvable max-product FRE (7), (J+, J−) be a feasible pair
with respect to Equation (7) and k ∈ {1, . . . ,m} such that x̄k + ȳk = 1.
Then (J+ ∪ {k}, J−) and (J+, J− ∪ {k}) are feasible pairs with respect to
Equation (7).
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Proof. We will show that (J+ ∪{k}, J−) is a feasible pair with respect to
Equation (7). The proof for (J+, J− ∪ {k}) is analogous.

On the one hand, we consider j ∈ (J+ ∪ {k}) ∩ J−. If j 6= k, we obtain
that j ∈ J+ ∩ J−. Therefore, since (J+, J−) is a feasible pair, the equality
x̄j + ȳj = 1 holds. Furthermore, if j = k, then by hypothesis x̄k + ȳk = 1.

On the other hand, taking into account that (J+, J−) is a feasible pair
with respect to Equation (7) and J+ ⊆ J+ ∪ {k}, we obtain that, for each
i ∈ {1, . . . , n}, one the following statements is satisfied:

(a) There exists j ∈ J+ ∪ {k} such that a+ij ∗ x̄j = bi.

(b) There exists j ∈ J− such that a−ij ∗ ȳj = bi.

Hence, we conclude that (J+ ∪ {k}, J−) is a feasible pair with respect to
Equation (7). �

In what follows, we introduce a result which shows under what conditions
an arbitrary bipolar max-product fuzzy relation equation with the standard
negation is solvable. In particular, the solvability of bipolar max-product
FREs is characterized by the existence of feasible pairs. The idea behind
this characterization is outlined in the sequel.

Notice that, in Example 12, the pair (J+, J−), where J+ = {2} and
J− = {1, 3}, is a feasible pair with respect to Equation (8). The underlying
significance of this fact is that all the independent terms of Equation (8)
can be reached by means of x̄2 (since J+ = {2}), ȳ1 and ȳ3 (since J− =
{1, 3}). Hence, the existence of a feasible pair is in a certain way a sufficient
condition for the solvability of a bipolar max-product FRE, whenever each
subequation of the bipolar equation is solvable. In other words, as long as
1 ≤ x̄1 + ȳ1 and 1 ≤ x̄2 + ȳ2. As we will formalize below, the existence of a
feasible pair together with the inequality 1 ≤ x̄j+ȳj, for each j ∈ {1, . . . ,m},
is not only a sufficient condition, but a necessary condition for the solvability
of a bipolar max-product FRE.

Theorem 14. The bipolar max-product FRE (6) is solvable if and only if
there exists (at least) a feasible pair (J+, J−) with respect to its correspond-
ing max-product FRE (7) and the inequality 1 ≤ x̄j + ȳj holds for each
j ∈ {1, . . . ,m}, where (x̄1, ȳ1, . . . , x̄m, ȳm) ∈ [0, 1]2m is the greatest solution
of Equation (7).

Proof. To begin with, suppose that 1 ≤ x̄j + ȳj holds, for each j ∈
{1, . . . ,m}, and that there exists a feasible pair (J+, J−) with respect
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to Equation (7). Consider the tuple (x̂1, . . . , x̂m) defined, for each j ∈
{1, . . . ,m}, as:

x̂j =

{
x̄j if j ∈ J+

1− ȳj otherwise

We will see that (x̂1, . . . , x̂m) is a solution of Equation (6). Consider i ∈
{1, . . . , n} fixed, by hypothesis, one of the following holds:

(a) There exists j ∈ J+ such that a+ij ∗ x̄j = bi.

(b) There exists j ∈ J− such that a−ij ∗ ȳj = bi.

If Statement (a) is verified, since j ∈ J+, we obtain that x̂j = x̄j, and thus
a+ij ∗ x̂j = bi. In addition, according to the fact that 1 ≤ x̄j + ȳj, the operator
∗ is order-preserving and the tuple (x̄1, ȳ1, . . . , x̄m, ȳm) ∈ [0, 1]2m is a solution
of Equation (7), we can assert that the following chain of inequalities holds:

a−ij ∗ (1− x̂j) ≤ a−ij ∗ ȳj ≤ bi

On the contrary, if Statement (b) is satisfied, there exists j ∈ J− such that
a−ij ∗ ȳj = bi. As a result, x̂j is defined as 1− ȳj, and therefore:

a−ij ∗ (1− x̂j) = a−ij ∗ ȳj = bi

Furthermore, as 1 ≤ x̄j + ȳj, ∗ is order-preserving and (x̄1, ȳ1, . . . , x̄m, ȳm) ∈
[0, 1]2m is a solution of Equation (7), we obtain that:

a+ij ∗ x̂j = a+ij ∗ (1− ȳj) ≤ a+ij ∗ x̄j ≤ bi

Hence, in both cases, we can ensure that there exists j ∈ {1, . . . ,m} such
that:

(a+ij ∗ x̂j) ∨ (a−ij ∗ (1− x̂j)) = bi

Now, we will see that, for any j∗ ∈ {1, . . . ,m} different from j, we obtain
that:

(a+ij∗ ∗ x̂j∗) ∨ (a−ij∗ ∗ (1− x̂j∗)) ≤ bi

On the one hand, if j∗ ∈ J+, x̂j∗ coincides with x̄j∗ . Therefore, taking
into account that 1 ≤ x̄j∗ + ȳj∗ and that (x̄1, ȳ1, . . . , x̄m, ȳm) ∈ [0, 1]2m is a
solution of Equation (7), we can assert that:

(a+ij∗ ∗ x̂j∗) ∨ (a−ij∗ ∗ (1− x̂j∗)) ≤ bi
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On the other hand, if j∗ /∈ J+, then x̂j∗ = 1 − ȳj∗ . Due to 1 ≤ x̄j∗ +
ȳj∗ , ∗ is order-preserving and (x̄1, ȳ1, . . . , x̄m, ȳm) ∈ [0, 1]2m is a solution of
Equation (7), we deduce the next chain of inequalities

(a+ij∗∗x̂j∗)∨(a−ij∗∗(1−x̂j∗)) = (a+ij∗∗(1−ȳj∗))∨(a−ij∗∗ȳj∗) ≤ (a+ij∗∗x̄j∗)∨(a−ij∗∗ȳj∗) ≤ bi

This leads us to conclude that
m∨
j=1

(a+ij ∗ x̂j) ∨ (a−ij ∗ (1− x̂j)) = bi

that is, (x̂1, . . . , x̂m) is a solution of equation i in Equation (6). According
to the fact that i is an arbitrary element in {1, . . . , n}, we conclude that
(x̂1, . . . , x̂m) is a solution of Equation (6), as we want to prove.

Now, suppose that Equation (6) is solvable and that (x̂1, . . . , x̂m) is a
solution of Equation (6). Clearly, the tuple (x̂1, 1 − x̂1, . . . , x̂m, 1 − x̂m)
is a solution of Equation (7). Furthermore, according to the fact that
(x̄1, ȳ1, . . . , x̄m, ȳm) is the greatest solution of Equation (7), the inequali-
ties x̂j ≤ x̄j and 1 − x̂j ≤ ȳj hold, for each j ∈ {1, . . . ,m}. Therefore, we
obtain that 1 ≤ x̂j + ȳj ≤ x̄j + ȳj, for each j ∈ {1, . . . ,m}.

According to Corollary 10, we can suppose without loss of generality
that, for each j ∈ {1, . . . ,m}, either x̂j = x̄j or x̂j = 1 − ȳj. Consider the
two index sets J+, J− ⊆ {1, . . . ,m} defined as follows:

J+ = {j ∈ {1, . . . ,m} | x̂j = x̄j}
J− = {j ∈ {1, . . . ,m} | x̂j = 1− ȳj}

In the sequel, we will prove that (J+, J−) forms a feasible pair with
respect to Equation (7). That is, we will see that 1 = x̄j + ȳj for each j ∈
J+∩J−, and either Statement (a) or (b) is satisfied for each i ∈ {1, . . . , n}.
In fact, the former is straightforwardly obtained since, if j ∈ J+ ∩ J−, then
x̄j = 1− ȳj. Consequently, 1 = x̄j + ȳj.

Given i ∈ {1, . . . , n}, as (x̂1, . . . , x̂m) is a solution of Equation (6), we
can assert that one of the following statements hold:

• there exists j ∈ {1, . . . ,m} such that a+ij ∗ x̂j = bi

• there exists j ∈ {1, . . . ,m} such that a−ij ∗ (1− x̂j) = bi

Assume that there exists j ∈ {1, . . . ,m} such that a+ij∗x̂j = bi. Clearly, if
x̂j = x̄j, then j ∈ J+ and Statement (a) of Definition 11 is straightforwardly
satisfied.
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Now, we consider that x̂j 6= x̄j, then, by Corollary 10 and the supposition
above, we have that x̂j = 1 − ȳj, and so, j ∈ J−. Notice that, since
(x̄1, ȳ1, . . . , x̄m, ȳm) is a solution of Equation (7), then a+ij ∗ x̄j ≤ bi and
a−ij ∗ ȳj ≤ bi, for each j ∈ {1, . . . ,m}. Furthermore, taking into account
that ∗ is an order-preserving mapping and (x̂1, 1 − x̂1, . . . , x̂m, 1 − x̂m) ≤
(x̄1, ȳ1, . . . , x̄m, ȳm), we obtain that a−ij ∗ x̂j ≤ a−ij ∗ x̄j ≤ bi, for each j ∈
{1, . . . ,m}. Therefore, since a+ij ∗ x̂j = bi holds, the equality a+ij ∗ x̄j = bi
is also satisfied. As x̂j 6= x̄j and ∗ is strictly order-preserving, we deduce
that a+ij = 0 and so, bi = 0. Hence, as a−ij ∗ (1 − x̂j) ≤ 0, we conclude that
a−ij ∗ (1− x̂j) = 0. In other words, Statement (b) holds.

On the contrary, assume that there exists j ∈ {1, . . . ,m} such that
a−ij ∗ (1 − x̂j) = bi. Clearly, if x̂j = 1 − ȳj, then j ∈ J− and Statement
(b) of Definition 11 is straightforwardly satisfied. Following an analogous
reasoning to the previous case, we deduce that, if 1 − x̂j 6= ȳj, then j ∈
J+ and Statement (a) of Definition 11 holds. As a result, we obtain that
(J+, J−) forms a feasible pair. �

Hence, this theorem presents necessary and sufficient conditions in order
to guarantee the solvability of a bipolar max-product FRE. Moreover, the
proof of Theorem 14 shows how to define different solutions of this equation.
The next section will be focused on deepening in the study bipolar max-
product FREs, characterizing the maximal and minimal solutions.

4. Characterizing the maximal and minimal solutions of bipolar
max-product FREs

This section will study whether the existence of maximal or minimal so-
lutions is always guaranteed for bipolar max-product FREs and, if they ex-
ist, how they can be computed. In what follows, we will achieve these goals
introducing the conditions under which an arbitrary bipolar max-product
FRE has a greatest solution (respectively a least solution) or maximal so-
lutions (respectively minimal solutions).

The idea behind the existence theorem of the greatest solution (respec-
tively a least solution) or maximal solutions (respectively minimal solutions)
of a bipolar max-product FRE is quite different from the case of one bipolar
max-product fuzzy equation.

Hence, we will consider the set S+ of index sets that appear in the
first argument of feasible pairs in order to provide a characterization of
its greatest solution or maximal solutions. Specifically, we obtain that the
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maximal solutions of such set S+, with respect to the inclusion ⊆, are closely
related to the maximal solutions of the bipolar fuzzy relation equation.

Theorem 15. Let Equation (6) be a solvable bipolar max-product FRE,
(x̄1, ȳ1, . . . , x̄m, ȳm) ∈ [0, 1]2m be the greatest solution of its corresponding
max-product FRE (7), S be the set of feasible pairs with respect to Equa-
tion (7) and S+ = {J+ | (J+, J−) ∈ S}. The following statements hold:

(a) If the set S+ has a greatest element, then Equation (6) has a greatest
solution.

(b) The number of maximal solutions of Equation (6) coincides with the
number of maximal elements of S+.

Proof. In order to demonstrate Statement (a), suppose that there exists
the greatest element Ĵ+ of S+ and consider the tuple (x̂1, . . . , x̂m) given by

x̂j =

{
x̄j if j ∈ Ĵ+

1− ȳj otherwise

We will see that (x̂1, . . . , x̂m) is the greatest solution of Equation (6). Notice
that, following a similar reasoning to the proof of Theorem 14, we can easily
obtain that (x̂1, . . . , x̂m) is a solution of Equation (6). It remains to see then
that it is its greatest solution. We will proceed by reductio ad absurdum.

Suppose that there exists a solution (x1, . . . , xm) of Equation (6) such
that (x1, . . . , xm) 6≤ (x̂1, . . . , x̂m). As a result, there exists k ∈ {1, . . . ,m}
such that x̂k < xk. Notice that, the tuple (x1, 1− x1, . . . , xm, 1− xm) forms
a solution of Equation (7), and thus xj ≤ x̄j for each j ∈ {1, . . . ,m}.
In particular, x̂k < xk ≤ x̄k. Therefore, according to the definition of
(x̂1, . . . , x̂m), we can assert that k /∈ Ĵ+, and thus 1 − ȳk = x̂k < xk.
Furthermore, taking into account Statement (a) in Lemma 9, we obtain
that the tuple (x1, . . . , xk−1, x̄k, xk+1, . . . , xm) is a solution of Equation (6).
In order to avoid including a new notation, we will suppose without loss
of generality that (x1, . . . , xm) = (x1, . . . , xk−1, x̄k, xk+1, . . . , xm), that is,
xk = x̄k.

Hence, consider the index sets J+ and J− defined as follows

J+ = {j ∈ {1, . . . ,m} | xj = x̄j}
J− = {j ∈ {1, . . . ,m} | xj = 1− ȳj}
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Clearly, following an analogous reasoning to the proof in Theorem 14, we
obtain that (J+, J−) ∈ S. Besides, k ∈ J+, and thus we can assert that
J+ 6⊆ Ĵ+, which contradicts the hypothesis of Ĵ+ being the greatest element
of S+.

As a result, we conclude that (x̂1, . . . , x̂m) is the greatest solution of
Equation (6), as we want to demonstrate, and thus Statement (a) holds.

In what regards Statement (b), let A be the set of maximal elements
of S+, B be the set of maximal solutions of Equation (6) and consider the
mapping f : A → B which maps each maximal element Ĵ+ of S+ with the
tuple (x̂1, . . . , x̂m) given by

x̂j =

{
x̄j if j ∈ Ĵ+

1− ȳj otherwise

In the following, we will prove that f is a bijection. Firstly, let us see that
f is well-defined. Clearly, by the proof in Theorem 14, given Ĵ+ ∈ S+,
the tuple f(Ĵ+) = (x̂1, . . . , x̂m) is a solution of Equation (6). Therefore,
it remains to see that it is a maximal solution of Equation (6). We will
proceed by reductio ad absurdum.

Suppose that (x̂1, . . . , x̂m) is not a maximal solution of Equation (6), that
is, there exists a solution (x1, . . . , xm) of Equation (6) such that (x̂1, . . . , x̂m) <
(x1, . . . , xm). Consider the sets J+ and J− given by

J+ = {j ∈ {1, . . . ,m} | xj = x̄j}
J− = {j ∈ {1, . . . ,m} | xj = 1− ȳj}

By an analogous reasoning to the proof in Theorem 14, (J+, J−) ∈ S. Now,
observe that (x1, 1− x1, . . . , xm, 1− xm) is a solution of Equation (7), and
thus xj ≤ x̄j for each j ∈ {1, . . . ,m}. This fact together with the inequality

(x̂1, . . . , x̂m) < (x1, . . . , xm) allows us to assert that xj = x̄j, for each j ∈ Ĵ+.

As a result, Ĵ+ ⊆ J+. Furthermore, as (x̂1, . . . , x̂m) is strictly smaller than
(x1, . . . , xm), we deduce that there exists k ∈ {1, . . . ,m} such that x̂k < xk.
Clearly, it must be x̂k = 1 − ȳk and thus, by definition, k /∈ Ĵ+. Lastly,
we have just to realise that, basing on Statement (a) in Lemma 9, we can
suppose without loss of generality that xk = x̄k. This fact implies that
k ∈ J+, and thus Ĵ+ ⊂ J+, in contradiction with the hypothesis. Hence,
we conclude that the mapping f is well-defined.

In order to see that f is order-embedding, given Ĵ+
1 , Ĵ

+
2 ∈ A with Ĵ+

1 6=
Ĵ+
2 , we suppose that f(Ĵ+

1 ) = f(Ĵ+
2 ) and we will obtain a contradiction.
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In fact, if Ĵ+
1 6= Ĵ+

2 , then we can suppose without loss of generality that
there exists k ∈ Ĵ+

1 such that k /∈ Ĵ+
2 . As a consequence, given f(Ĵ+

1 ) =
(x̂1

1, . . . , x̂
1
m) and f(Ĵ+

2 ) = (x̂2
1, . . . , x̂

2
m), then by definition x̂1

k = x̄k and
x̂2
k = 1− ȳk. Therefore, if the equality f(Ĵ+

1 ) = f(Ĵ+
2 ) is satisfied, we obtain

that x̄k = 1− ȳk. In other words, 1 = x̄k + ȳk.
Now, as Ĵ+

2 ∈ S+, notice that there exists some index set Ĵ−2 ⊆ {1, . . . ,m}
such that (Ĵ+

2 , Ĵ
−
2 ) ∈ S. Furthermore, consider the sets J+ = Ĵ+

2 ∪{k} and
J− = Ĵ−2 . Notice that, since 1 = x̄k + ȳk, Proposition 13 allows us to ensure
that (J+, J−) is also a feasible pair with respect to Equation (7), that is,
(J+, J−) ∈ S. Hence, J+ ∈ S+ and clearly Ĵ+

2 ⊂ J+, in contradiction with
the hypothesis of Ĵ+

2 being a maximal element of S+. We can conclude then
that f is order-embedding.

It remains to demonstrate that f is onto. Given (x̂1, . . . , x̂m) ∈ B,
consider the sets Ĵ+ and Ĵ− defined as follows

Ĵ+ = {j ∈ {1, . . . ,m} | x̂j = x̄j}
Ĵ− = {j ∈ {1, . . . ,m} | x̂j = 1− ȳj}

In the following, we will see that Ĵ+ ∈ A and f(Ĵ+) = (x̂1, . . . , x̂m). It
is important to highlight that, if there exists j ∈ {1, . . . ,m} such that
1 − ȳj < x̂j < x̄j, then Lemma 9 leads us to assert that there exists a
solution of Equation (6) that is greater than (x̂1, . . . , x̂m), and therefore
(x̂1, . . . , x̂m) /∈ B, in contradiction with the hypothesis. Moreover, the cases
x̄j < x̂j and x̂j < 1 − ȳj are not possible since (x̄1, ȳ1, . . . , x̄m, ȳm) is the
greatest solution of Equation (7). As a consequence, we can suppose that,
for each j ∈ {1, . . . ,m}, either x̂j = x̄j or x̂j = 1 − ȳj. On the one hand,

this fact implies that, whenever Ĵ+ ∈ A, we can ensure that f(Ĵ+) =
(x̂1, . . . , x̂m). On the other hand, we obtain that the expression Ĵ+ ∪ Ĵ− =
{1, . . . ,m} holds. In the following, to finish with this demonstration, we
will see that indeed Ĵ+ ∈ A.

By an analogous reasoning to the proof of Theorem 14, we obtain that
(Ĵ+, Ĵ−) ∈ S, and thus Ĵ+ ∈ S+. Suppose now that Ĵ+ /∈ A, that is,
that there exists J+ ∈ S+ such that Ĵ+ ⊂ J+, and consider the tuple
(x1, . . . , xm) defined as

xj =

{
x̄j if j ∈ J+

1− ȳj otherwise

Clearly, following an analogous reasoning to the proof of Theorem 14,
(x1, . . . , xm) is a solution of Equation (6). By definition, for each j ∈ Ĵ+ ⊂
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J+, we obtain that x̂j = x̄j = xj. In addition, there exists k /∈ Ĵ+ such that
k ∈ J+, which implies that x̂k 6= x̄k and xk = x̄k. Therefore, taking into
account that (x̂1, 1 − x̂1, . . . , x̂m, 1 − x̂m) is a solution of Equation (7) and
consequently x̂k ≤ x̄k, we can assert that x̂k < x̄k = xk for this index k.
Finally, for each j /∈ Ĵ+, as Ĵ+ ∪ Ĵ− = {1, . . . ,m}, we obtain that j ∈ Ĵ−,
from which x̂j = 1− ȳj. Taking into account that (Ĵ+, Ĵ−) ∈ S, we can as-
sert that 1 ≤ x̄j + ȳj, or equivalently 1− ȳj ≤ x̄j. As a result, the inequality
x̂j ≤ xj holds.

Consequently, we deduce that (x̂1, . . . , x̂m) < (x1, . . . , xm), which leads
us to a contradiction due to (x̂1, . . . , x̂m) ∈ B by hypothesis. Hence, we can
assert that Ĵ+ ∈ A. �

Theorem 15 does not only provides a characterization of the existence of
the greatest solution or maximal solutions of a solvable bipolar max-product
fuzzy relation equation. From its demonstration, we can also deduce the
analytical description of these solutions which are provided in the next
corollary.

Corollary 16. Let Equation (6) be a solvable bipolar max-product FRE,
(x̄1, ȳ1, . . . , x̄m, ȳm) ∈ [0, 1]2m be the greatest solution of its correspond-
ing max-product FRE (7), S be the set of feasible pairs with respect to
Equation (7) and S+ = {J+ | (J+, J−) ∈ S}. Consider the mapping
f : S+ → [0, 1]m which associates each J+ ∈ S+ with the tuple (x1, . . . , xm)
defined, for each j ∈ {1, . . . ,m}, as:

xj =

{
x̄j if j ∈ J+

1− ȳj otherwise

The following statements hold:

(a) If the set S+ has a greatest element J+, then f(J+) is the greatest
solution of Equation (6).

(b) Let M+ be the set of maximal elements of S+. Then, the set of max-
imal solutions of Equation (6) is given by:

{f(J+) | J+ ∈M+}

In what regards the existence of the least solution or minimal solutions
of a given bipolar max-product FRE, the idea is dual to the previous case.
Now, we will consider the set composed of index sets appearing in the second
argument of feasible pairs with respect to its corresponding max-product
fuzzy equation.
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Theorem 17. Let Equation (6) be a solvable bipolar max-product FRE,
(x̄1, ȳ1, . . . , x̄m, ȳm) ∈ [0, 1]2m be the greatest solution of its corresponding
max-product FRE (7), S be the set of feasible pairs with respect to Equa-
tion (7) and S− = {J− | (J+, J−) ∈ S}. The following statements hold:

(a) If the set S− has a greatest element, then Equation (6) has a least
solution.

(b) The number of minimal solutions of Equation (6) coincides with the
number of maximal elements of S−.

Proof. As far as Statement (a) is concerned, suppose that there exists the
greatest element Ĵ− of S− and consider the tuple (x̂1, . . . , x̂m) given by

x̂j =

{
1− ȳj if j ∈ Ĵ−

x̄j otherwise

Following a dual reasoning to the proof of Theorem 15 and taking into
account Statement (b) in Lemma 9, we deduce that (x̂1, . . . , x̂m) is the least
solution of Equation (6).

Regarding Statement (b), we consider the set A of maximal elements of
S−, the set B of minimal solutions of Equation (6) and the mapping f : A→
B, which maps each maximal element Ĵ− of S− to the tuple (x̂1, . . . , x̂m),
defined for each j ∈ {1, . . . ,m} as

x̂j =

{
1− ȳj if j ∈ Ĵ−

x̄j otherwise

Once again, following a dual reasoning to the proof of Theorem 15 and
considering Statement (b) in Lemma 9, we conclude that f is a bijection.
Hence, the number of minimal solutions of Equation (6) coincides with the
number of maximal elements of S−. �

From Theorem 17, we can deduce the analytical description of the least
solution or minimal solutions of a bipolar max-product FRE. The next
corollary formalizes this result.

Corollary 18. Let Equation (6) be a solvable bipolar max-product FRE,
(x̄1, ȳ1, . . . , x̄m, ȳm) ∈ [0, 1]2m be the greatest solution of its correspond-
ing max-product FRE (7), S be the set of feasible pairs with respect to
Equation (7) and S− = {J− | (J+, J−) ∈ S}. Consider the mapping
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f : S− → [0, 1]m which associates each J− ∈ S− with the tuple (x1, . . . , xm)
defined, for each j ∈ {1, . . . ,m}, as:

xj =

{
1− ȳj if j ∈ J−

x̄j otherwise

The following statements hold:

(a) If the set S− has a greatest element J−, then f(J−) is the least solution
of Equation (6).

(b) Let M− be the set of maximal elements of S−. Then, the set of mini-
mal solutions of Equation (6) is given by:

{f(J−) | J− ∈M−)}

Finally, we will introduce an illustrative example in order to clarify the
results provided in this section.

Example 19. The following bipolar max-product FRE composed of three
equations and three unknown variables will be considered:

(0.1 ∗ x1) ∨ (0.3 ∗ (1− x1)) ∨ (0.25 ∗ x2) ∨ (0.3 ∗ (1− x2)) ∨ (0.4 ∗ x3) ∨ (0.4 ∗ (1− x3)) = 0.2
(0.1 ∗ x1) ∨ (0.8 ∗ (1− x1)) ∨ (0.3 ∗ x2) ∨ (0.6 ∗ (1− x2)) ∨ (0.3 ∗ x3) ∨ (0.5 ∗ (1− x3)) = 0.4
(0.3 ∗ x1) ∨ (0.8 ∗ (1− x1)) ∨ (0.4 ∗ x2) ∨ (0.5 ∗ (1− x2)) ∨ (0.8 ∗ x3) ∨ (0.8 ∗ (1− x3)) = 0.4

(9)

It is easy to see that the corresponding max-product fuzzy equation of
Equation (9) is given by Equation (8) in Example 12.

In the following, we will check whether the conditions required in The-
orem 14 are satisfied. Clearly, the inequality 1 ≤ x̄i + ȳi holds, for each
i ∈ {1, 2, 3}. Furthermore, as shown in Example 12, the pair ({2}, {1, 3})
forms a feasible pair with respect to Equation (8).

As a result, the hypothesis required in Theorem 14 are verified and
therefore, we can assert that there exists at least a solution of Equation (9).
For instance, we can deduce that the tuple (0.5, 0.8, 0.5) is a solution of such
system.

Now, making the corresponding calculations, we obtain that the sets S+

and S− are given by:

S+ =
{
∅, {1}, {2}, {3}, {1, 3}, {2, 3}

}
S− =

{
{1}, {2}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}

}
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It is important to highlight that there is no A ∈ S+ such that {1, 2} ⊆
A. The reason is that, in such case, the second equation is not satisfied.
Furthermore, this fact implies that {1, 2, 3} /∈ S+ and consequently ∅ /∈ S−.

On the one hand, notice that S+ has two maximal elements, {1, 3} and
{2, 3}. As a consequence, according to Theorem 15, Equation (9) has two
maximal solutions. In particular, Corollary 16 allows us to ensure that
(x̄1, 1− ȳ2, x̄3) = (1, 0.3̂, 0.5) and (1− ȳ1, x̄2, x̄3) = (0.5, 0.8, 0.5) are the two
maximal solutions of Equation (9).

On the other hand, as {1, 2, 3} is the greatest element of S−, applying
Theorem 17 we deduce that Equation (9) has a least solution. Specifically,
from Corollary 18, we conclude that the tuple (1 − ȳ1, 1 − ȳ2, 1 − ȳ3) =
(0.5, 0.3̂, 0.5) is the least solution of Equation (9). �

5. Conclusions and future work

We have introduced a general study on the solvability of bipolar max-
product fuzzy relation equations with the standard negation. First of all, we
have analysed the particular case of bipolar max-product fuzzy equations.
As well as characterizing the solvability of these equations, we have included
different properties related to the existence of a greatest/least solution or
maximal/minimal solutions.

In the sequel, the necessary and sufficient conditions, which indicate
when a bipolar max-product fuzzy relation equation with the standard
negation is solvable, have been presented. Finally, we have studied the
maximal and minimal solutions of a solvable bipolar max-product fuzzy
relation equation with the standard negation. This study allows to solve
equations with two of the most interesting and useful operators considered
in real cases, the product t-norm (related to probabilities properties) and
the standard negation (the most used negation in the applications). To
complete the presented investigation on bipolar max-product FREs with
the standard negation, providing the set of all solutions will suppose one
of the main challenges to be explored in the future. Furthermore, a formal
study on the modification of the covering problem for bipolar FREs, as well
as on the concept of irredundant covering for bipolar FREs, will be carried
out in the future.

In order to provide an automatic mechanism for the solvability of a
bipolar max-product fuzzy relation equation with the standard negation, an
efficient algorithm for the existence of feasible pairs will be researched in the
future. For this purpose, existing algorithms for FREs in the literature will
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be taken into account as reference [2, 25, 26, 29, 30, 32, 41]. In particular,
due to the connection between feasible pairs and coverings, those algorithms
concerning the covering problem [23, 27, 39, 40] will be instrumental in this
task. In addition to applying the obtained results to practical examples, we
are interested in studying bipolar fuzzy relation equations based on more
general compositions such as max-t-norm, max-uninorm and max-unorm.
The use of arbitrary negations in bipolar fuzzy relation equations will also
be an important issue to deal with in our future work.
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