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Abstract

Bipolar fuzzy relation equations arise as a generalization of fuzzy re-
lation equations considering unknown variables together with their logical
connective negations. The occurrence of a variable and the occurrence of its
negation simultaneously can give very useful information for certain frame-
works where the human reasoning plays a key role. Hence, the resolution of
bipolar fuzzy relation equations systems is a research topic of great interest.

This paper focuses on the study of bipolar fuzzy relation equations sys-
tems based on the max-product t-norm composition. Specifically, the solv-
ability and the algebraic structure of the set of solutions of these bipolar
equations systems will be studied, including the case in which such sys-
tems are composed of equations whose independent term be equal to zero.
As a consequence, this paper complements the contribution carried out by
the authors on the solvability of bipolar max-product fuzzy relation equa-
tions [1].

Keywords: Bipolar fuzzy relation equation, max-product t-norm
composition, negation operator, fuzzy set.

1. Introduction

A broad development of the theory and applications of fuzzy relational
equations (FREs), based on different max-t-norm compositions, has been
carried out since they were introduced by Sanchez in the 1980s [2, 3]. In
the literature, we can find many papers dealing with the resolution of (sys-
tems of) FREs defined with either the max-min composition [4, 5, 6, 7], the
max-product composition [8, 9, 10, 11], the max-Archimedean t-norm com-
position [12, 13, 14] or other different compositions [15, 16, 17, 18, 19, 20, 21,
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22, 23, 24, 25]. In what regards to the applied perspective, it is important
to emphasize that FREs have increased the range of applications of fuzzy
sets theory. The compression and decompression of images and videos [26],
the modeling of fuzzy inference systems in fuzzy control [27] and the rep-
resentation of restrictions in optimization problems [28, 29, 30, 31], among
others, are some of the most recent applications of FREs based on max-
t-norm compositions. FREs have also been related to other mathematical
frameworks, such as fuzzy formal concept analysis [18, 19].

A new type of (system of) fuzzy relation equations arises when equations
contain unknown variables together with their logical negations simultane-
ously. This new kind of equations are called bipolar fuzzy relation equations.
Considering a negation operator provides the standard fuzzy relation equa-
tions with flexibility in the applications, as it is shown in [32, 33, 34, 35, 36],
where bipolar fuzzy relations equations have been successfully used in op-
timization problems. To the best of our knowledge, the specific literature
on the resolution of (systems of) bipolar fuzzy relation equations is really
limited. A detailed analysis on the solvability of (systems) of bipolar max-
min FREs with the standard negation is presented in [37]. Following this
research line, we can also find a wide study on the resolution of (systems)
of bipolar max-product FREs with the product negation in [1]. Clearly,
the behaviour of the minimum t-norm and the product t-norm is differ-
ent, therefore the results obtained in [1] are markedly different from those
presented in [37].

In this paper, we are interested in continuing with the work done in [1].
A characterization theorem for the solvability of (systems of) bipolar max-
product FREs with the product negation and the properties related to the
algebraic structure of the set of solutions have been introduced in [1]. How-
ever, the solvability of (systems of) bipolar max-product FREs, with some
independent term equal to zero, is an open problem to be solved.

Three different parts can be distinguished in our contribution. The first
part introduces the notion of bipolar max-product fuzzy relation equation
with the product negation. A characterization on the solvability of such
equations is given and different properties associated with the existence of
the greatest/least solution or a finite number of maximal/minimal solu-
tions for these last equations are introduced. The second part shows under
what conditions a bipolar max-product fuzzy relation equations system is
solvable and presents the algebraic structure of the set of solutions of the
solvable systems. Both parts take into consideration the possibility of the
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independent term in the equations can be zero, which gives an added value
to the work done by the authors in [1]. The third part includes a toy ex-
ample which exposes a practical application. Finally, some conclusions and
prospects for future work are included.

2. Bipolar FREs based on the product t-norm

A detailed study on the resolution of bipolar max-product fuzzy relation
equations with the product negation was carried out in [1], where a charac-
terization theorem for the solvability of such bipolar FREs was presented.
The conditions to guarantee when a solvable bipolar max-product FRE has
a greatest/least solution or a finite number of maximal/minimal solutions
were also given in [1]. However, the results related to the existence of the
greatest/least solution or a finite number of maximal/minimal solutions do
not consider bipolar max-product FREs whose independent term is zero.
In this section, we will focus on this task.

Bipolar max-product FREs with the product negation are given from
max-product FREs considering unknown variables together with their logi-
cal negations simultaneously, in that case the product negation. The formal
definition of a bipolar max-product fuzzy relation equation with the product
negation is introduced below.

Definition 1. Let a+j , a
−
j , b ∈ [0, 1] and xj be an unknown variable belong-

ing to [0, 1], for all j ∈ {1, . . . ,m}, ∗ the product t-norm, ∨ the maximum
operator and nP the product negation defined as nP (0) = 1 and nP (x) = 0,
for all x ∈ ]0, 1]. Equation (1) is called bipolar max-product fuzzy relation
equation with the product negation.

m∨
j=1

(a+j ∗ xj) ∨ (a−j ∗ nP (xj)) = b (1)

In the following, we will characterize the solvability of bipolar fuzzy
relation equations defined previously, that is, we will provide the sufficient
and necessary conditions under which bipolar max-product FREs with the
product negation are solvable.

Theorem 2 ([1]). Let a+j , a
−
j , b ∈ [0, 1] and xj be an unknown variable

belonging to [0, 1], for all j ∈ {1, . . . ,m}. The bipolar max-product fuzzy
relation equation given by Equation (1) is solvable if and only if one of the
following statements is verified:
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(a) If b = 0, then either a+j = 0 or a−j = 0, for each j ∈ {1, . . . ,m}.

(b) If b 6= 0, then either b ≤ max{a+j | j ∈ {1, . . . ,m}} or there exists
k ∈ {1, . . . ,m} such that a−k = b.

Different cases have to be analyzed in order to ensure the existence of
the greatest/least solution and the set of maximal/minimal solutions of a
solvable bipolar max-product FRE whose independent term is different from
zero. It is convenient to remind the definition of the residuated implication
associated with the product operator, that is z ←P x = min(1, z/x), for all
x, z ∈ [0, 1]. It is also needed to mention that the operators ∗ and←P satisfy
the adjoint property, that is, x ∗ y ≤ z if and only if y ≤ z ←P x, being
x, y, z ∈ [0, 1]. The residuated implication ←P and the adjoint property
will play an important role throughout the paper.

Theorem 3 ([1]). Given a+j , a
−
j ∈ [0, 1], b ∈ ]0, 1], xj an unknown variable

belonging to [0, 1], for each j ∈ {1, . . . ,m}, and a solvable bipolar max-
product FRE as in Equation (1), then the following statements hold:

(1) If b ≤ max{a+j | j ∈ {1, . . . ,m}}, then the set of solutions of Equa-
tion (1) has a greatest element. The greatest solution is given by the
tuple (b←P a+1 , . . . , b←P a+m).

(2) If a+j < b for each j ∈ {1, . . . ,m}, then the number of maximal so-
lutions of Equation (1) is finite. The set of maximal solutions of
Equation (1) is given by:

{(1, . . . , 1, xk, 1, . . . , 1) | xk = 0 with k ∈ K−P }

where K−P = {k ∈ {1, . . . ,m} | a−k = b}

(3) If there exists k ∈ {1, . . . ,m} such that a−k = b and a−j ≤ b, for each
j ∈ {1, . . . ,m}, then the set of solutions of Equation (1) has a least
solution. The least solution of Equation (1) is (0, . . . , 0).

(4) If there exist k1, k2 ∈ {1, . . . ,m} such that a−k1 = b and a−k2 > b, then
the set of solutions of Equation (1) has no minimal elements.

(5) If a−j 6= b for each j ∈ {1, . . . ,m}, then the number of minimal solu-
tions of Equation (1) is finite. The set of minimal solutions of Equa-
tion (1) is given by:

{(0, . . . , 0, xk, 0, . . . , 0) | xk = b←P a+k with k ∈ K+
P }

where K+
P = {k ∈ {1, . . . ,m} | a+k ≥ b and a−j < b for each j 6= k}.
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The following theorem shows that a solvable bipolar max-product FRE
whose independent term is zero has always a greatest solution. In addition,
this result establishes the conditions under which such equation either has
a least solution or it does not have minimal solutions.

Theorem 4. Given a+j , a
−
j ∈ [0, 1], xj an unknown variable belonging to

[0, 1], for each j ∈ {1, . . . ,m}, and a solvable bipolar max-product FRE
given by:

m∨
j=1

(a+j ∗ xj) ∨ (a−j ∗ nP (xj)) = 0 (2)

then the following statements hold:

(1) The greatest solution of Equation (2) is given by the tuple (x̂1, . . . , x̂m)
which is defined as:

x̂j =

{
0 if a−j = 0
1 if a+j = 0

for each j ∈ {1, . . . ,m}.

(2) The least solution of Equation (2) is (0, . . . , 0) if and only if a−j = 0,
for each j ∈ {1, . . . ,m}.

(3) If there exists k ∈ {1, . . . ,m} such that a−k > 0, then the set of solu-
tions of Equation (2) has no minimal element.

Proof. Since Equation (2) is solvable, by Theorem 2, we can ensure that
either a+j = 0 or a−j = 0, for each j ∈ {1, . . . ,m}. Taking into account this
fact, we will prove Statments (1), (2) and (3).

(1) We will demonstrate that the tuple (x̂1, . . . , x̂m) defined as:

x̂j =

{
0 if a−j = 0
1 if a+j = 0

for each j ∈ {1, . . . ,m}, is a solution of Equation (2).

Given k ∈ {1, . . . ,m}, if a+k = 0, then x̂k = 1 and thus we obtain the
following equality:

(a+k ∗ x̂k) ∨ (a−k ∗ nP (x̂k)) = (0 ∗ 1) ∨ (a−k ∗ 0) = 0
5



Otherwise, if a−k = 0, then x̂k = 0, which leads us to the equality:

(a+k ∗ x̂k) ∨ (a−k ∗ nP (x̂k)) = (a+k ∗ 0) ∨ (0 ∗ 1) = 0

Therefore, the tuple (x̂1, . . . , x̂m) verifies that:

m∨
j=1

(a+j ∗ x̂j) ∨ (a−j ∗ nP (x̂j)) = 0

and, as a consequence, it is a solution of Equation (2).

In the following, we will prove that the tuple (x̂1, . . . , x̂m) is the great-
est solution of Equation (2) by reduction to the absurd. We will
suppose that there exists a tuple (x1, . . . , xm) being solution of Equa-
tion (2) such that (x1, . . . , xm) 6≤ (x̂1, . . . , x̂m). Then, we can guaran-
tee that there exists k ∈ {1, . . . ,m} such that xk > x̂k.

• If a+k = 0, then by definition of the tuple (x̂1, . . . , x̂m), we ob-
tain that xk > x̂k = 1. This fact is a contradiction since, by
hypothesis, the value xk belongs to [0, 1].

• Otherwise, if a−k = 0 then by definition of the tuple (x̂1, . . . , x̂m),
we obtain that xk > x̂k = 0. Hence, we have that (a+k ∗ xk) ∨
(a−k ∗ nP (xk)) = (a+k ∗ xk) ∨ (0 ∗ 0) = a+k ∗ xk > 0. Therefore

m∨
j=1

(a+j ∗ x̂j) ∨ (a−j ∗ nP (x̂j)) ≥ a+k ∗ xk > 0

This fact contradicts that (x1, . . . , xm) be solution of Equation (2).

As a consequence, we can ensure that (x̂1, . . . , x̂m) is the greatest
solution of Equation (2).

(2) We will suppose that a−j = 0, for each j ∈ {1, . . . ,m}. Obviously,
Equation (2) can be expressed in the following way:

m∨
j=1

(a+j ∗ xj) ∨ (0 ∗ nP (xj)) =
m∨
j=1

(a+j ∗ xj) = 0

Clearly, the tuple (0, . . . , 0) is the only solution of Equation (2). As a
consequence, (0, . . . , 0) is the least solution of Equation (2).
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In order to prove the counterpart, we will suppose that (0, . . . , 0) is
the least solution of Equation (2). Therefore, we obtain that:

m∨
j=1

(a+j ∗ 0) ∨ (a−j ∗ nP (0)) =
m∨
j=1

(a−j ∗ nP (0)) =
m∨
j=1

a−j = 0

Consequently, we can ensure that a−j = 0, for each j ∈ {1, . . . ,m}.

(3) We will suppose that there exists k ∈ {1, . . . ,m} such that a−k > 0 in
Equation (2), by Theorem 2, a+k = 0. If (x1, . . . , xk−1, xk, xk+1, . . . , xm)
is solution of Equation (2) then xk > 0. Clearly, the tuple given by
(x1, . . . , xk−1,

xk

2
, xk+1, . . . , xm) is also solution of Equation (2) verify-

ing (x1, . . . , xk−1,
xk

2
, xk+1, . . . , xm) < (x1, . . . , xk−1, xk, xk+1, . . . , xm).

Since this procedure can be repeated indefinitely we can ensure that
Equation (2) does not have minimal solutions.

In view of the result obtained in the previous theorem, we can ensure
that the existence of the least solution can only be guaranteed when the
considered solvable bipolar max-product FRE as Equation (2) is actually a
solvable max-product FRE with independent term equal to zero.

After characterizing the solvability of bipolar max-product FREs with
the product negation and studying the algebraic structure of the set of
solutions, we are interested in the resolution of systems of bipolar max-
product FREs with the product negation.

3. Solving bipolar FREs systems from the product t-norm

An initial study on the solvability of systems of bipolar max-product
FREs with the product negation was presented in [1]. Now, we will deepen
in this study including results related to the algebraic structure of the com-
plete set of solutions corresponding to an arbitrary solvable system of bipolar
max-product FREs with the product negation.

It is worth highlighting that the conditions required to guarantee the
solvability of systems of bipolar max-product FREs are significantly differ-
ent from the obtained ones for only one bipolar max-product FRE. Specif-
ically, the resolution of an arbitrary system of bipolar max-product FREs
is characterized by the existence of two index sets satisfying certain prop-
erties. The following definition includes the notion of feasible pair of index
sets, which will play an important role from now on.
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Definition 5. Let m,n ∈ N, a+ij, a
−
ij, bi, xj ∈ [0, 1], for each i ∈ {1, . . . , n}

and j ∈ {1, . . . ,m}. Consider the bipolar max-product FREs system given
by System (3):

m∨
j=1

(a+ij ∗ xj) ∨ (a−ij ∗ nP (xj)) = bi i ∈ {1, . . . , n} (3)

A pair of index sets (J+, J−) with J+, J− ⊆ {1, . . . ,m} is said to be feasible
with respect to System (3) if1 J+ ] J− = {1, . . . ,m} and for each i ∈
{1, . . . , n}:

(a) If bi = 0, then a+ij = 0 for each j ∈ J+ and a−ij = 0 for each j ∈ J−.

(b) If bi > 0, then one of the following statements is verified:

(b1) there exists j ∈ J+ such that a+ij ≥ bi and bi ←P a+ij ≤ bh ←P a+hj,
for each h ∈ {1, . . . , n}.

(b2) there exists j ∈ J− such that a−ij = bi and the inequality a−hj ≤ bh
is satisfied, for each h ∈ {1, . . . , n}.

As we mentioned above, the solvability of bipolar max-product FREs
systems with the product negation is characterized by the existence of fea-
sible pairs of index sets, as the following theorem shows.

Theorem 6. Let a+ij, a
−
ij, bi, xj ∈ [0, 1], for each i ∈ {1, . . . , n} and j ∈

{1, . . . ,m}. The bipolar max-product FRE system given by System (3) is
solvable if and only if there exists at least a feasible pair with respect to
System (3).

Proof. Suppose that there exists a feasible pair (J+, J−) with respect to
System (3) and we will prove that the tuple (x1, . . . , xm) defined, for each
j ∈ {1, . . . ,m}, as:

xj =

{
0 if j ∈ J−

min{bh ←P a+hj | h ∈ {1, . . . , n}} if j ∈ J+

is solution of System (3). Fixed i∈{1, . . . , n}, we will distinguish two cases:

1Notice that, by definition, J+]J− = {1, . . . ,m} if and only if J+∪J− = {1, . . . ,m}
and J+ ∩ J− = ∅.
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• Case bi = 0: According to Definition 5, we obtain that a+ij = 0 for
each j ∈ J+ and a−ij = 0 for each j ∈ J−. By the definition of xj, we
have that xj = 0, for each j ∈ J−. Hence, for each j ∈ J−, the next
chain of equalities is satisfied:

(a+ij ∗ xj) ∨ (a−ij ∗ nP (xj)) = (a+ij ∗ 0) ∨ (0 ∗ 1) = 0

Considering again the definition of xj, for each j ∈ J+, we can ensure
that xj = min{bh ←P a+hj | h ∈ {1, . . . , n}}, and therefore xj > 0.
Thus, for each j ∈ J+, the following chain of equalities is verified:

(a+ij ∗ xj) ∨ (a−ij ∗ nP (xj)) = (0 ∗ xj) ∨ (a−ij ∗ 0) = 0

Due to J+ ] J− = {1, . . . ,m}, we conclude that

m∨
j=1

(a+ij ∗ xj) ∨ (a−ij ∗ nP (xj)) = 0 = bi

That is, the tuple (x1, . . . , xm) satisfies the i-th equation of System (3).

• Case bi > 0: The proof of the tuple (x1, . . . , xm) satisfies the i-th
equation of System (3) can be found in Theorem 20 of [1].

Therefore, the i-th equation of System (3) given by:

m∨
j=1

(a+ij ∗ xj) ∨ (a−ij ∗ nP (xj)) = bi

is satisfied. Following an analogous reasoning for each i ∈ {1, . . . , n}, we
can conclude that (x1, . . . , xm) is a solution of System (3).

In order to prove the counterpart, suppose that System (3) is solvable
and we will demonstrate that there exists at least a feasible pair with respect
to System (3). Given a solution (x1, . . . , xm) of System (3), let us define
two index sets J+ and J− as follows:

J+ = {j ∈ {1, . . . ,m} | xj > 0}
J− = {j ∈ {1, . . . ,m} | xj = 0}

Clearly, J+ ] J− = {1, . . . ,m}. That is, the index sets J+ and J− sastify
that J+ ∩ J− = ∅ and J+ ∪ J− = {1, . . . ,m}. Fixed i ∈ {1, . . . , n}, we will
distinguish two cases:
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• Case bi = 0: We obtain that (a+ij ∗ xj) ∨ (a−ij ∗ nP (xj)) = 0, for each
j ∈ {1, . . . ,m}. By the definition of the maximum operator, we have
that a+ij ∗xj = 0 and a−ij ∗nP (xj) = 0, for each j ∈ {1, . . . ,m}. On the
one hand, for each j ∈ J+, we have that xj > 0 and as a consequence,
we deduce that a+ij has to be equal to zero in order to the equality
a+ij ∗ xj = 0 be satisfied. On the other hand, for each j ∈ J−, we have
that xj = 0 and therefore, we obtain that a−ij has to be equal to zero
in order to the equality a−ij ∗ nP (xj) = 0 be satisfied. Consequently,
a+ij = 0 for each j ∈ J+ and a−ij = 0 j ∈ J−.

• Case bi > 0: The proof of the index sets J+ and J− satisfy Statement
(b) of Definition 5 can be found in Theorem 20 of [1].

By using an analogous reasoning for each i ∈ {1, . . . , n}, we can conclude
that (J+, J−) is a feasible pair with respect to System (3).

It is important to mention that the previous theorem provides an added
value to Theorem 20 presented by the authors in [1], since the characteri-
zation of the solvability of bipolar max-product FREs systems is completed
with the consideration of systems whose equations can take the value zero
in the independent term.

The following step in our study will be to know when a bipolar max-
product FRE system with the product negation has either a greatest/least
solution or a finite number of maximal/minimal solutions. Specifically, in
what regards the existence of the greatest solution or maximal solution,
the next result shows that the algebraic structure of a bipolar max-product
FRE system is closely related to the algebraic structure of the set of feasible
pairs with respect to that system.

Theorem 7. Let a+ij, a
−
ij, bi, xj ∈ [0, 1], for each i ∈ {1, . . . , n} and j ∈

{1, . . . ,m}. Consider that System (3) is a solvable bipolar max-product
FRE system, and let S, S+ be the sets defined as:

S = {(J+, J−) | J+, J− ⊆ {1, . . . ,m}, (J+, J−) is a feasible pair w.r.t System (3)}

S+ = {J+ | (J+, J−) ∈ S}

Then, the following statements hold:

(1) If S+ has a greatest element, then System (3) has a greatest solution.
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(2) The number of maximal solutions of System (3) coincides with the
number of maximal elements of S+.

Proof. First of all, we will prove Statement (1). Suppose that S+ has
a greatest element, that is, there exists Ĵ+ ∈ S+ such that J+ ⊆ Ĵ+ for
each J+ ∈ S+, and consider the tuple (x̂1, . . . , x̂m) defined, for each j ∈
{1, . . . ,m}, as follows:

x̂j =

{
0 if j ∈ Ĵ−

min{bh ←P a+hj | h ∈ {1, . . . , n}} if j ∈ Ĵ+

being Ĵ− = {1, . . . ,m} \ Ĵ+. We will see by reduction to the absurd that
(x̂1, . . . , x̂m) is the greatest solution of System (3).

Suppose that there exists a solution (x1, . . . , xm) of System (3) such that
(x1, . . . , xm) 6≤ (x̂1, . . . , x̂m). That is, there exists k ∈ {1, . . . ,m} such that
xk > x̂k. Now, let us distinguish the following two cases and we will obtain
a contradiction from both of them:

• Case k ∈ Ĵ+: By definition of the tuple (x̂1, . . . , x̂m), we obtain that
x̂k = min{bh ←P a+hk | h ∈ {1, . . . , n}}. Consider fixed the index i ∈
{1, . . . , n} such that bi ←P a+ik = min{bh ←P a+hk | h ∈ {1, . . . , n}}.
Since xk > x̂k = bi ←P a+ik, by the adjoint property, we can ensure
that a+ik ∗ xk > bi. Therefore, the following chain of inequalities holds:

m∨
j=1

(a+ij ∗ xj) ∨ (a−ij ∗ nP (xj)) ≥ a+ik ∗ xk > bi

Consequently, i-th equation is not satisfied and thus (x1, . . . , xm) is
not a solution of System (3), which is a contradiction.

• Case k ∈ Ĵ−: By definition of the tuple (x̂1, . . . , x̂m), we have that
x̂k = 0. In addition, xk > 0 since xk > x̂k by hypothesis. Since
(x1, . . . , xm) is a solution of System (3), applying Theorem 6, we can
find two index sets J+, J− defined as follows:

J+ = {j ∈ {1, . . . ,m} | xj > 0}
J− = {j ∈ {1, . . . ,m} | xj = 0}

such that (J+, J−) ∈ S. Due to the fact that k ∈ J+ and Ĵ+∩Ĵ− = ∅,
we can assert that J+ 6⊆ Ĵ+, in contradiction with the hypothesis.
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Hence, the tuple (x̂1, . . . , x̂m) is the greatest solution of System (3).
Now we will prove Statement (2), that is, we will see that the number

of maximal solutions of System (3) coincides with the number of maximal
elements of S+. To reach this conclusion, we will denote the set of maximal
elements of S+ as A = {Ĵ+ ∈ S+ | Ĵ+ 6⊂ J+ for each J+ ∈ S+}, the set
of maximal solutions of System (3) as B and we will see that the mapping
f : A→ B, which associates each Ĵ+ ∈ A with the tuple (x̂1, . . . , x̂m) defined
as:

x̂j =

{
0 if j /∈ Ĵ+

min{bh ←P a+hj | h ∈ {1, . . . , n}} if j ∈ Ĵ+

for each j ∈ {1, . . . ,m}, is a bijection.
First of all, we will see that f is well-defined. Given Ĵ+ ∈ A, we will

prove that f(Ĵ+) = (x̂1, . . . , x̂m) belongs to B, that is, that f(Ĵ+) is a
maximal solution of System (3). Applying Theorem 6, we can ensure that
(x̂1, . . . , x̂m) is a solution of System (3) since (Ĵ+, Ĵ−) ∈ S. It remains to
prove that (x̂1, . . . , x̂m) is a maximal solution. We will reach to this conclu-
sion by reduction to the absurd. Consequently, suppose that there exists a
solution (x1, . . . , xm) of System (3) such that (x1, . . . , xm) > (x̂1, . . . , x̂m).
Clearly, we can assert that xj ≥ x̂j, for each j ∈ {1, . . . ,m}, and that there

exists k ∈ {1, . . . ,m} such that xk > x̂k. Suppose that k ∈ Ĵ+ and consider
fixed i ∈ {1, . . . , n} such that bi ←P a+ik = min{bh ←P a+hk | h ∈ {1, . . . , n}},
we obtain that x̂k = bi ←P a+ik. From the adjoint property and taking into
account that xk > x̂k, we can assert that xk > bi ←P a+ik implies that
a+ik ∗ xk > bi. Hence, the chain of inequalities below holds:

m∨
j=1

(a+ij ∗ xj) ∨ (a−ij ∗ nP (xj)) ≥ a+ik ∗ xk > bi

That is, i-th equation is not satisfied, and therefore (x1, . . . , xm) is not a
solution of System (3), in contradiction with the hypothesis. Therefore, we
can assert that k /∈ Ĵ+. Hence, x̂k = 0 by definition and xk > x̂k = 0.

Now, we consider two index sets J+ and J− defined in the following way:

J+ = {j ∈ {1, . . . ,m} | xj > 0}
J− = {j ∈ {1, . . . ,m} | xj = 0}

Following an analogous reasoning to the proof in Theorem 6, since
(x1, . . . , xm) is a solution of System (3), we can assert that (J+, J−) ∈ S.
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In particular, we have that J+ ∈ S+. On the one hand, we obtain that
Ĵ+ ⊆ J+ since xj ≥ x̂j, for each j ∈ {1, . . . ,m}. On the other hand,

we obtain that k ∈ J+, since xk > 0. Taking into account that k ∈ Ĵ−

and Ĵ+ ] Ĵ− = {1, . . . ,m}, we have that k /∈ Ĵ+. Hence, we deduce that
Ĵ+ ⊂ J+, which is a contradiction because the index set Ĵ+ was supposed
to be a maximal element of the set S+.

Therefore, we conclude that (x̂1, . . . , x̂m) is a maximal solution of Sys-
tem (3), that is, f(Ĵ+) = (x̂1, . . . , x̂m) belongs to B. Thus, the mapping f
is well-defined.

Hereinafter, we will see that f is a bijection between A and B. Let us
prove that f is order-embedding. Consider Ĵ+

1 , Ĵ
+
2 ∈ A with Ĵ+

1 6= Ĵ+
2 ,

being f(Ĵ+
1 ) = (x̂1

1, . . . , x̂
1
m) and f(Ĵ+

2 ) = (x̂2
1, . . . , x̂

2
m). Without lost of

generality, we can ensure that there exists k ∈ {1, . . . ,m} such that k ∈
Ĵ+
1 and k /∈ Ĵ+

2 , and then x̂1
k > 0 while x̂2

k = 0. This fact implies that
(x̂1

1, . . . , x̂
1
m) 6= (x̂2

1, . . . , x̂
2
m).

Lastly, we demonstrate that f is onto. Given (x̂1, . . . , x̂m) ∈ B, that is,
a maximal solution of System (3), we will obtain a set Ĵ+ ∈ A such that
f(Ĵ+) = (x̂1, . . . , x̂m). Consider the sets Ĵ+, Ĵ− defined as follows:

Ĵ+ = {j ∈ {1, . . . ,m} | x̂j > 0}
Ĵ− = {j ∈ {1, . . . ,m} | x̂j = 0}

Since (x̂1, . . . , x̂m) is a solution of System (3), applying Theorem 6, we
deduce that (Ĵ+, Ĵ−) ∈ S and Ĵ+ ∈ S+. In order to prove that Ĵ+ ∈ A, we
will proceed by reduction to the absurd.

Suppose that there exists J+ ∈ S+ such that Ĵ+ ⊂ J+. Then, we define
the tuple (x1, . . . , xm) in the following form:

xj =

{
0 if j /∈ J+

min{bh ←P a+hj | h ∈ {1, . . . , n}} if j ∈ J+

We obtain that (J+, J−) ∈ S, being J− = {1, . . . ,m} \ J+, since J+ ∈ S+.
Applying Theorem 6, we obtain that (x1, . . . , xm) is a solution of Sys-
tem (3). Now, taking into account the definition of the tuples (x1, . . . , xm)
and (x̂1, . . . , x̂m), we can observe that:

• For each j ∈ Ĵ− ∩ J−, by definition x̂j = xj = 0.

• Given j ∈ J+, we can deduce that x̂j ≤ xj. In fact, if x̂j > xj, then
there exists i ∈ {1, . . . , n} such that x̂j > bi ←P a+ij. According to
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the adjoint property, we obtain that a+ij ∗ x̂j > bi. From this fact, we
conclude that the i-th equation in System (3) is not satisfied. Thus,
the tuple (x̂1, . . . , x̂m) is not a solution of System (3), in contradiction
with the hypothesis. Therefore we can assert that x̂j ≤ xj for each

j ∈ J+. Moreover, since Ĵ+ ⊂ J+, we obtain that x̂j ≤ xj for each

j ∈ Ĵ+.

• Taking into account Ĵ+ ⊂ J+, we can ensure that there exists k ∈ J+

such that k /∈ Ĵ+. According to the definition of xk and x̂k, we obtain
that xk > x̂k = 0.

Hence, we can assert that (x1, . . . , xm) > (x̂1, . . . , x̂m), which contradicts the
fact that (x̂1, . . . , x̂m) is a maximal solution of System (3). Consequently,
we conclude that there is no J+ ∈ S+ such that Ĵ+ ⊂ J+, or equivalently,
Ĵ+ is a maximal element in S+, that is Ĵ+ ∈ A.

To finish with this demonstration, we will see that f(Ĵ+) = (x̂1, . . . , x̂m).
Firstly, notice that x̂j is straightforwardly equal to 0, for each j /∈ Ĵ+. Now,

suppose that there exists k ∈ Ĵ+ such that x̂k 6= min{bh ←P a+hk | h ∈
{1, . . . , n}}. Given i ∈ {1, . . . , n} such that bi ←P a+ik = min{bh ←P a+hk |
h ∈ {1, . . . , n}}, then one and only one of the next two cases is hold:

• Case x̂k > bi ←P a+ik: By the adjoint property, we can assert that
x̂k > bi ←P a+ik implies a+ik ∗ x̂k > bi. As a result, the chain of
inequalities below holds:

m∨
j=1

(a+ij ∗ x̂j) ∨ (a−ij ∗ nP (x̂j) ≥ a+ik ∗ x̂k > bi

Thus, the tuple (x̂1, . . . , x̂m) is not a solution of System (3), in con-
tradiction with the hypothesis.

• Case x̂k < bi ←P a+ik: We have that a solution of System (3) is
(x̂1, . . . , x̂k−1, bi ←P a+ik, x̂k+1, . . . , x̂m), which is clearly strictly greater
than (x̂1, . . . , x̂m). This fact contradicts that (x̂1, . . . , x̂m) is a maximal
solution of System (3).

Hence, we can ensure that x̂j = min{bh ←P a+hj | h ∈ {1, . . . , n}}, for each

j ∈ Ĵ+. To sum up, we have shown that the tuple (x̂1, . . . , x̂m) is given, for
each j ∈ {1, . . . ,m}, by

x̂j =

{
0 if j /∈ Ĵ+

min{bh ←P a+hj | h ∈ {1, . . . , n}} if j ∈ Ĵ+
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That is, f(Ĵ+) = (x̂1, . . . , x̂m). Consequently, we conclude that f is a
bijection between A and B, and thus, the number of maximal solutions of
System (3) coincides with the number of maximal elements of S+.

The following corollary arises as a consequence of Theorem 7.

Corollary 8. Let a+ij, a
−
ij, bi, xj ∈ [0, 1], for each i ∈ {1, . . . , n} and j ∈

{1, . . . ,m}. Consider that System (3) is a solvable bipolar max-product
FRE system, and let S, S+ be the sets defined as:

S = {(J+, J−) | J+, J− ⊆ {1, . . . ,m}, (J+, J−) is a feasible pair w.r.t System (3)}

S+ = {J+ | (J+, J−) ∈ S}
Consider the mapping f : S+ → [0, 1]m which associates each J+ ∈ S+ with
the tuple (x1, . . . , xm) defined, for each j ∈ {1, . . . ,m}, by

xj =

{
0 if j /∈ J+

min{bh ←P a+hj | h ∈ {1, . . . , n}} if j ∈ J+

Then, the following statements hold:

(1) If S+ has a greatest element J+, then f(J+) is the greatest solution
of System (3).

(2) Let M+ be the set of maximal elements of S+. Then, the set of max-
imal solutions of System (3) is given by:

{f(J+) | J+ ∈M+}

The existence of the least solution and the set of minimal solutions of
a solvable bipolar max-product FREs system is also studied distinguishing
cases, as it is shown below.

Theorem 9. Let a+ij, a
−
ij, bi, xj ∈ [0, 1], for each i ∈ {1, . . . , n} and j ∈

{1, . . . ,m}. Consider that System (3) is a solvable bipolar max-product
FREs system and let S, S− be the sets defined as:

S = {(J+, J−) | J+, J− ⊆ {1, . . . ,m}, (J+, J−) is a feasible pair w.r.t System (3)}

S− = {J− | (J+, J−) ∈ S}
Considering, for each J− ∈ S−, the set IJ− defined as:

IJ− = {i ∈ {1, . . . , n} | bi = 0 or a−ij < bi for each j ∈ J−}

we obtain the following statements:
15



1. If {1, . . . ,m} ∈ S−, then System (3) has a least solution.

2. If {1, . . . ,m} /∈ S−, the number of minimal solutions of System (3)
coincides with the number of maximal elements of the set S−, such
that the following system has a unique solution:∨

j∈{1,...,m}
j /∈J−

(a+ij ∗ xj) ∨ (a−ij ∗ nP (xj)) = bi, i ∈ IJ− (4)

Proof. Notice that if {1, . . . ,m} ∈ S−, then following an analogous rea-
soning to the proof given in Theorem 6, we obtain that the tuple (0, . . . , 0)
is a solution of System (3) and clearly it is the least solution of System (3).
Hence, Statement (1) is straightforwardly satisfied.

In order to prove Statement (2), we will define A as the set of maximal
elements J− of S− such that System (4) has only one solution and B as the
set of minimal solutions of System (3). We have to see that the cardinal of
A coincides with the cardinal of B. To reach this target, we will define a
mapping from A to B and we will see that it forms a bijection. Consider
the mapping f : A→ B such that each Ĵ− ∈ A is associated with the tuple
(x̂1, . . . , x̂m) defined, for each j ∈ {1, . . . ,m}, as

x̂j =

{
0 if j ∈ Ĵ−

min{bh ←P a+hj | h ∈ {1, . . . , n}} if j /∈ Ĵ−

To begin with, we will see that f is well defined. That is, given Ĵ− ∈ A,
we will conclude that the tuple f(Ĵ−) = (x̂1, . . . , x̂m) is a minimal solu-
tion of System (3), and thus (x̂1, . . . , x̂m) belongs to the set B. Clearly, if
{1, . . . ,m} /∈ S− then Ĵ+ = {1, . . . ,m} \ Ĵ−, and following an analogous
reasoning to the proof given in Theorem 6, we obtain that (x̂1, . . . , x̂m) is a
solution of System (3). In order to see that it is a minimal solution, we are
going to proceed by reduction to the absurd.

Suppose that there exists a solution (x1, . . . , xm) of System (3) such that
(x1, . . . , xm) < (x̂1, . . . , x̂m). Let us consider that the set Ĵ+ has l elements
with l ∈ N, and we denote this set as Ĵ+ = {j1, . . . , jl}. Then, we are going
to deduce that the corresponding tuples (xj1 , . . . , xjl) and (x̂j1 , . . . , x̂jl) are
different and they both are solutions of System (4), in contradiction with
the hypothesis.

According to (x1, . . . , xm) < (x̂1, . . . , x̂m), clearly (xj1 , . . . , xjl) ≤ (x̂j1 , . . . , x̂jl).
Furthermore, the inequality (x1, . . . , xm) < (x̂1, . . . , x̂m) implies that there
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exists k ∈ {1, . . . ,m} such that xk < x̂k. Notice that, x̂j = 0 for each

j ∈ Ĵ− and the chain 0 ≤ xk < x̂k holds, thus we obtain that k /∈ Ĵ−.
Therefore, by definition, k ∈ Ĵ+. As a consequence, we can assert that
(xj1 , . . . , xjl) < (x̂j1 , . . . , x̂jl), and therefore they are different tuples. It re-
mains to demonstrate that they both are solutions of System (4). Clearly,
if IĴ− = ∅, then (xj1 , . . . , xjl) and (x̂j1 , . . . , x̂jl) are straightforwardly solu-
tions of System (4), since there are no equations to be satisfied. Therefore,
we can suppose from now on that IĴ− 6= ∅.

Notice that, as (x̂1, . . . , x̂m) is a solution of System (3), then

m∨
j=1

(a+ij ∗ x̂j) ∨ (a−ij ∗ nP (x̂j)) = bi, i ∈ {1, . . . , n}

Therefore, since {j1, . . . , jl} ⊆ {1, . . . ,m} and IĴ− ⊆ {1, . . . , n}, we can
assert that ∨

j∈Ĵ+

(a+ij ∗ x̂j) ∨ (a−ij ∗ nP (x̂j)) ≤ bi, i ∈ IĴ−

Now, consider fixed i ∈ IĴ− . On the one hand, if bi = 0, as System (3) is

solvable, then Theorem 6 allows us to assert that a+ij = 0 for each j ∈ Ĵ+.

Furthermore, by definition of the mapping f , x̂j > 0 for each j ∈ Ĵ+, and
thus np(x̂j) = 0. As a result, we obtain that∨

j∈Ĵ+

(a+ij ∗ x̂j) ∨ (a−ij ∗ nP (x̂j)) = 0

That is, (x̂j1 , . . . , x̂jl) is a solution of the i-th equation of System (4).
On the other hand, if bi > 0, by definition of the set IĴ− , the inequality

a−ij < bi holds for each j ∈ Ĵ−. Hence, due to (x̂1, . . . , x̂m) is a solution of

System (3), there exists k ∈ Ĵ+ such that a+ik ≥ bi and a+ik ∗ x̂k = bi. As a
consequence, we conclude that∨

j∈Ĵ+

(a+ij ∗ x̂j) ∨ (a−ij ∗ nP (x̂j)) = bi

That is, the tuple (x̂j1 , . . . , x̂jl) is a solution of the i-th equation in Sys-
tem (4). Following an analogous reasoning for each i ∈ IĴ− , we conclude
that (x̂j1 , . . . , x̂jl) is a solution of System (4).
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Now, we are going to see that (xj1 , . . . , xjl) is also a solution of Sys-

tem (4). Notice that, if xj > 0 for each j ∈ Ĵ+, we can repeat the previous
reasoning about the tuple (xj1 , . . . , xjl). Therefore, we will see that xj > 0

is satisfied, for each j ∈ Ĵ+, by reduction to the absurd.
Suppose that xk = 0 for some k ∈ Ĵ+. As a consequence, k /∈ Ĵ−.

Now, defining the sets J+ = {j ∈ {1, . . . ,m} | xj > 0} and J− = {j ∈
{1, . . . ,m} | xj = 0}, we obtain that k ∈ J−. Furthermore, by defi-

nition, x̂j = 0 for each j ∈ Ĵ−. This fact together with the inequality

(xj1 , . . . , xjl) < (x̂j1 , . . . , x̂jl) allows us to assert that xj = 0 for each j ∈ Ĵ−,

and thus Ĵ− ⊆ J−. Hence, since k ∈ J− and k /∈ Ĵ−, we deduce that
Ĵ− ⊂ J−. Finally, following the reasoning provided in the proof of Theo-
rem 6, we can assert that (J+, J−) is a feasible pair, and thus J− ∈ S−. As
a consequence, Ĵ− is not a maximal element in S−, in contradiction with
the hypothesis.

We conclude then that System (4) has two different solutions (xj1 , . . . , xjl)
and (x̂j1 , . . . , x̂jl), which contradicts the hypothesis. Therefore, the tuple
(x̂1, . . . , x̂m) is a minimal solution of System (3), and then the mapping f
is well-defined.

Finally, we will prove that f is an bijective mapping from A to B. The
fact that f is order-embedding is directly obtained from its definition. Let
Ĵ−1 , Ĵ

−
2 ∈ A with Ĵ−1 6= Ĵ−2 . Without loss of generality, we can suppose

that there exists k ∈ Ĵ−1 such that k /∈ Ĵ−2 . As a consequence, if f(Ĵ−1 ) =
(x̂1

1, . . . , x̂
1
m) and f(Ĵ−2 ) = (x̂2

1, . . . , x̂
2
m), by definition of the mapping f ,

x̂1
k = 0 and x̂2

k > 0, which implies that (x̂1
1, . . . , x̂

1
m) 6= (x̂2

1, . . . , x̂
2
m). That

is, f(Ĵ−1 ) 6= f(Ĵ−2 ), and thus f is order-embedding.
To finish with this demonstration, we show that f is onto. Let (x̂1, . . . , x̂m)

be a minimal solution of System (3), and consider the sets

Ĵ+ = {j ∈ {1, . . . ,m} | x̂j > 0}
Ĵ− = {j ∈ {1, . . . ,m} | x̂j = 0}

Following an analogous reasoning to the proof in Theorem 6, we obtain that
(Ĵ+, Ĵ−) is a feasible pair, and thus Ĵ− belongs to S−.

Before proving that Ĵ− ∈ A, we will demonstrate by reduction to the
absurd that x̂j = min{bh ←P a+hj | h ∈ {1, . . . , n}} for each j ∈ Ĵ+.

Suppose then that there exists k ∈ Ĵ+ such that x̂k 6= min{bh ←P a+hk |
h ∈ {1, . . . , n}}. Clearly, if min{bh ←P a+hk | h ∈ {1, . . . , n}} < x̂k, then
there exists i ∈ {1, . . . , n} such that bi ←P a+ik < x̂k. Applying the adjoint
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property, the inequality bi < a+ik ∗ x̂k is satisfied, and therefore

bi < a+ik ∗ x̂k ≤
m∨
j=1

(a+ij ∗ x̂j) ∨ (a−ij ∗ nP (x̂j))

That is, the tuple (x̂1, . . . , x̂m) is not a solution of System (3), in contradic-
tion with the hypothesis.

On the contrary, assume that x̂k < min{bh ←P a+hk | h ∈ {1, . . . , n}}.
In this case, we obtain that x̂k < bh ←P a+hk for each h ∈ {1, . . . , n}.
Equivalently, a+hk ∗ x̂k < bh for each h ∈ {1, . . . , n}. Hence, as ∗ is an
order-preserving mapping, the inequality a+hk ∗

x̂k

2
< bh is verified, for each

h ∈ {1, . . . , n}.
Now, according to the fact that (x̂1, . . . , x̂m) is a solution of System (3),

the next expression holds:

m∨
j=1

(a+ij ∗ x̂j) ∨ (a−ij ∗ nP (x̂j)) = bi, i ∈ {1, . . . , n}

and therefore ∨
j∈{1,...,m}

j 6=k

(a+ij ∗ x̂j) ∨ (a−ij ∗ nP (x̂j))

∨(a+ik ∗ x̂k

2

)
∨
(
a−ik ∗ nP

(
x̂k

2

))
= bi

In other words, the tuple (x̂1, . . . , x̂k−1,
x̂k

2
, x̂k+1, . . . , x̂m) is a solution of

System (3) which is clearly strictly smaller than (x̂1, . . . , x̂m), since x̂k > 0.
This fact contradicts the hypothesis that (x̂1, . . . , x̂m) is a minimal solution
of System (3). Hence, we ensure that x̂j = min{bh ←P a+hj | h ∈ {1, . . . , n}},
for each j ∈ Ĵ+.

In the sequel, we will see that Ĵ− ∈ A. In order to reach this conclusion,
we have to prove that Ĵ− is a maximal element of S− and that System (4)
has only one solution. We will demonstrate these two statements by reduc-
tion to the absurd.

• Suppose that Ĵ− is not a maximal element of S−. In other words,
suppose that there exists J− ∈ S− such that Ĵ− ⊂ J−. Consider the
set J+ = {1, . . . ,m}\J− and the tuple (x1, . . . , xm) given by

xj =

{
0 if j ∈ J−

min{bh ←P a+hj | h ∈ {1, . . . , n}} if j ∈ J+
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The pair (J+, J−) is clearly feasible, and thus following an analogous
reasoning to the proof in Theorem 6, (x1, . . . , xm) is a solution of Sys-
tem (3). In the following, we will see that (x1, . . . , xm) < (x̂1, . . . , x̂m),
in contradiction with the hypothesis, that is (x̂1, . . . , x̂m) be a minimal
solution of System (3).

Notice that, as Ĵ− ⊂ J−, by definition xj = x̂j = 0 for each j ∈
Ĵ−. Furthermore, there exists k ∈ J− such that k /∈ Ĵ−, and thus
xk = 0 < x̂k. In addition, as x̂j = min{bh ←P a+hj | h ∈ {1, . . . , n}},
for each j ∈ Ĵ+, then xj ≤ x̂j holds, for each j ∈ Ĵ+, and hence
(x1, . . . , xm) < (x̂1, . . . , x̂m). This fact contradicts the hypothesis that
(x̂1, . . . , x̂m) is a minimal solution of System (3). Hence, we conclude
that Ĵ− is a maximal element of S−.

• Suppose that System (4) does not have a unique solution. Since the
tuple (x̂j1 , . . . , x̂jl) is a solution of System (4), we obtain then that
there exists another solution (xj1 , . . . , xjl) of System (4) different from
(x̂j1 , . . . , x̂jl). Due to x̂j = min{bh ←P a+hj | h ∈ {1, . . . , n}}, for

each j ∈ Ĵ+, we obtain that xj ≤ x̂j for each j ∈ Ĵ+. In other
words, (xj1 , . . . , xjl) ≤ (x̂j1 , . . . , x̂jl). Furthermore, as (xj1 , . . . , xjl) 6=
(x̂j1 , . . . , x̂jl), we can assert that (xj1 , . . . , xjl) < (x̂j1 , . . . , x̂jl).

Hence, defining the tuple (x∗1, . . . , x
∗
m) as

x∗j =

{
xj if j ∈ Ĵ+

0 if j ∈ Ĵ−

we obtain that (x1, . . . , xm) < (x̂1, . . . , x̂m) and it is straightforwardly
a solution of System (3). This fact contradicts the minimality of
(x̂1, . . . , x̂m) as a solution of System (3). Therefore, we conclude that
System (4) has a unique solution.

We conclude then that Ĵ− belongs to the set A. Clearly, according to
the definition of the mapping f , we can assert that f(Ĵ−) = (x̂1, . . . , x̂m).
Hence, the mapping f forms a bijection between A and B.

The following corollary is straightforwardly obtained from Theorem 9.

Corollary 10. Let a+ij, a
−
ij, bi, xj ∈ [0, 1], for each i ∈ {1, . . . , n} and j ∈

{1, . . . ,m}. Consider that System (3) is a solvable bipolar max-product
FREs system and let S, S− be the sets defined as:

S = {(J+, J−) | J+, J− ⊆ {1, . . . ,m}, (J+, J−) is a feasible pair w.r.t System (3)}
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S− = {J− | (J+, J−) ∈ S}

Consider, for each J− ∈ S−, the set IJ− defined as:

IJ− = {i ∈ {1, . . . , n} | bi = 0 or a−ij < bi for each j ∈ J−}

and the mapping f : S− → [0, 1]m which associates each J− ∈ S− with the
tuple (x1, . . . , xm) defined, for each j ∈ {1, . . . ,m}, by

xj =

{
0 if j ∈ J−

min{bh ←P a+hj | h ∈ {1, . . . , n}} if j /∈ J−

Then, the following statements hold:

(1) If {1, . . . ,m} ∈ S− then (0, . . . , 0) is the least solution of System (3).

(2) If {1, . . . ,m} /∈ S−, the set of minimal solutions of System (3) is given
by:

{f(J−) | J− ∈M−}

where M− is the set of maximal elements of S− such that System (4)
has a unique solution.

The theoretical study carried out in this paper will be illustrated by
using a toy example in the next section.

4. A toy example

This section will be devoted to illustrate how bipolar max-product FREs
can be employed to represent a real-world situation. A toy example, in
which a system of bipolar max-product fuzzy relation equations is capable
of modeling the behaviour of a motor, will be presented. Specifically, the
system of bipolar max-product FREs will be employed to determine what
the reasons/causes of the levels of overheating and relative humidity inside
the motor are and how a technician should perform in order to the motor
works properly.

Example 11. Technician experts establish that a motor works in an suit-
able way when its temperature and its relative humidity are maintained
under certain threshold, and therefore, they strongly recommend that the
water level, the oil level and the functioning of radiator fan be controlled.
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Taking into account this information, we will model an experimental situ-
ation corresponding to the behaviour of the motor. We need to introduce
the following notation in order to carry out this task.

The water and oil levels are represented by the variables x1 and x2,
respectively, which take values in the unit interval [0, 1]. In particular, the
value 1 indicates that the water/oil container is empty and the value 0 that
the quantity of water/oil has exceeded the permitted limit. The functioning
of the radiator fan is represented by the variable x3 ∈ {0, 1}, where the
value 0 means that the radiator fan is working and the value 1 that the
radiator fan is stopped. The overheating level of the motor is represented
by a value b1 ∈ [0, 1], where the value 0 indicates a correct temperature and
the value 1 a critical overheating level. The relative humidity inside the
motor is represented by a value b2 ∈ [0, 1], where the value 0 evinces that
the humidity is appropriate and the value 1 that humidity level is critical.

Once the notation has been introduced, we can formalize the conclu-
sions reached by technician experts on the performance of the motor. In
what regards the temperature of the motor, we will assume that the motor
behaves analogously to the motor in Example 19 of [1]. In the sequel, for
the sake of a self-contained example, we will remind the experts conclusions
included in [1].

• The motor overheating is directly proportional to the lack of water,
with proportionality constant 0.4. Furthermore, the motor overheats
at 0.7 when there is an excess of water. Therefore, the overheating
caused by the water level can be interpreted by using the expression
(0.4 ∗ x1) ∨ (0.7 ∗ nP (x1)). It is important to observe that the level
of overheating is low when the water container is almost full but not
exceeding the limits. This fact is due to if x1 > 0 then nP (x1) = 0.

• The motor overheating is also directly proportional to the lack of oil,
being the proportionality constant 0.2 in this case. In addition, an
overheating of 0.1 occurs when the oil exceeds the permitted limit.
Hence, the overheating caused by the oil level can be modeled by the
expression (0.2 ∗ x2) ∨ (0.1 ∗ nP (x2)).

• The radiator fan does not work correctly and it sometimes suddenly
stops. The motor overheats up to 0.5 when this happens. Moreover,
the standard behaviour of the radiator fan makes that the motor over-
heats at 0.2. Thus, the overheating caused by the radiator fan can be
interpreted by using the expression (0.5 ∗ x3) ∨ (0.2 ∗ nP (x3)).
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As it was stated in [1], the previous statements lead us to the following
bipolar max-product fuzzy relation equation, which summarizes the effect
of the water level, the oil level and the radiator fan on the temperature of
the motor:

(0.4∗x1)∨(0.7∗nP (x1))∨(0.2∗x2)∨(0.1∗nP (x2))∨(0.5∗x3)∨(0.2∗nP (x3)) = b1

Concerning the relative humidity of the motor, the experts made the next
assertions.

• The relative humidity inside the motor is not affected by the water
level, since the water container is properly isolated. However, the
relative humidity can increase up to 0.9 when the water exceeds the
limit. This fact can be modeled by the expression 0.9 ∗ nP (x1).

• The relative humidity inside the motor is not affected by the oil level.

• Finally, the radiator fan produces an increase in the relative humidity
up to 0.4 whenever it is stopped. As a result, the relative humidity
caused by the radiator fan can be interpreted as 0.4 ∗ x3.

Hence, in this case, the impact of the the water level, the oil level and
the radiator fan on the relative humidity inside the motor can be modelled
as

(0.9 ∗ nP (x1)) ∨ (0.4 ∗ x3) = b2

According to the previous considerations, based on the technician ex-
perts knowledge, the reasons/causes of overheating and relative humidity
level can be inferred from the system of bipolar max-product fuzzy relation
equations given below:

(0.4 ∗ x1) ∨ (0.7 ∗ nP (x1)) ∨ (0.2 ∗ x2) ∨ (0.1 ∗ nP (x2)) ∨ (0.5 ∗ x3) ∨ (0.2 ∗ nP (x3)) = b1 (5)

(0.9 ∗ nP (x1)) ∨ (0.4 ∗ x3) = b2

Now, we will suppose that the motor presents an overheating of b1 = 0.3
but its relative humidity is under control, that is, b2 = 0. It would be
interesting to know what values of water, oil and radiator fan are producing
this performance of the motor. In the sequel, we will see that the previous
system provides a useful tool in order to determine these values.

Defining J+
1 = {1, 2} and J−1 = {3}, one can easily check that (J+

1 , J
−
1 )

forms a feasible pair w.r.t. System (5). As a result, Theorem 6 allows
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us to assert that System (5) is solvable. Furthermore, there are only two
feasible pairs w.r.t. System (5) which are (J+

1 , J
−
1 ) = ({1, 2}, {3}) and

(J+
2 , J

−
2 ) = ({1}, {2, 3})

On the one hand, according to Theorem 7, since J+
1 is the greatest ele-

ment of the set S+ =
{
{1, 2}, {1}

}
, we conclude that there exists the great-

est solution of System (5). Specifically, it is given by the tuple (0.75, 1, 0).
On the other hand, concerning to the existence of minimal solutions, we

obtain that S− =
{
{3}, {2, 3}

}
, and thus {1, 2, 3} /∈ S−. Notice that, J−2 is

the unique maximal element of the set S−. In addition, since b2 = 0 and
the inequalities a−12 = 0.1 < 0.3 = b1 and a−13 = 0.2 < 0.3 = b1 hold, the set
IJ−

2
is defined as:

IJ−
2

= {i ∈ {1, . . . , n} | bi = 0 or a−ij < bi for each j ∈ J−2 } = {1, 2}

Consequently, System (4) of Theorem 9 is given by:

(0.4 ∗ x1) ∨ (0.7 ∗ nP (x1)) = b1

(0.9 ∗ nP (x1)) = b2

whose unique solution is x1 = 0.75. Hence, Theorem 9 leads us to conclude
that System (5) has only one minimal solution. In particular, (0.75, 0, 0) is
the minimal solution of System (5).

According to the greatest solution and the minimal solution of Sys-
tem (5), we deduce then that the water level is equal to 0.75 and that the
radiator fan is properly working, since its value is 0 in both cases. Notice
that, the oil level can take any value in [0, 1] and therefore we cannot infer
any information from the oil level. Nevertheless, in this particular situa-
tion, we can ignore the oil level since in the worst case it can gives rise an
overheating of 0.2 and it does not affect to the relative humidity.

From all this information, we would suggest to a technician refilling the
water container, being careful in order to do not exceed the limit. �

We have included a toy example in order to complement our study ex-
posing the possibilities of this contribution to practical applications. Specif-
ically, the situation and the variables involved in the behaviour of the motor
have been presented. Afterwards, the existing relations between the vari-
ables have been detailed and we have interpreted these relations as a system
of bipolar max-product fuzzy relations equations with the product negation.
In this procedure, one can realise that the product operator becomes crucial
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for modelling a proportional relation between two variables. Besides, the
usefulness of the negation operator nP in what regards to interpreting inter-
ruptions in a continuous relation have been shown. For instance, the sudden
changes in the motor overheating when the level of water or oil exceeds the
permitted limit are modelled through the operator nP .

Once the system of bipolar max-product fuzzy relations equations with
the product negation has been defined, the main results of the paper have
been applied. In particular, we make use of Theorems 6, 7 and 9, which
concern the solvability and the algebraic structure of the set of solutions of
System (5), in order to infer outcomes from a given real-world situation.

5. Conclusions and future work

We have solved one open problem given in [1], introducing a characteri-
zation on the resolution of any bipolar max-product FREs system, including
the systems with several zero elements in the independent terms. We have
complemented this characterization with diverse properties related to the
algebraic structure of the set of solutions of these systems. Hence, this pa-
per has completed the study on the resolution of any kind of fuzzy relation
equation with the product t-norm and its residuated negation. This t-norm
is one of the most important and useful operators, which is very natural in
the applications, as we have shown in Example 11.

The consideration of arbitrary negations and the use of other general
operators, such as uninorms and u-norms, instead of the product t-norm,
will be fundamental in the development of future advances in this research
topic.

[1] Cornejo M. E., Lobo D., Medina J. On the solvability of bipolar max-product fuzzy
relation equations with the product negation. Journal of Computational and Applied
Mathematics. 2019;354:520 - 532.

[2] Sanchez E. Resolution of composite fuzzy relation equations. Information and Con-
trol. 1976;30(1):38–48.

[3] Sanchez E. Inverses of fuzzy relations. Application to possibility distributions and
medical diagnosis. Fuzzy Sets and Systems. 1979;2(1):75 - 86.

[4] Chen L., Wang P. Fuzzy Relation Equations (II): The Branch-point-solutions and
the Categorized Minimal Solutions. Soft Computing–A Fusion of Foundations,
Methodologies and Applications. 2007;11:33-40.

[5] Chen L., Wang P. Fuzzy relation equations (I): the general and specialized solving
algorithms. Soft Computing–A Fusion of Foundations, Methodologies and Applica-
tions. 2002;6:428-435.

[6] Peeva K., Kyosev Y. Fuzzy Relational Calculus: Theory, Applications and Software.
World Scientific Publishing Company; 2004.

25



[7] Chi-Tsuen Y. On the minimal solutions of max-min fuzzy relational equations. Fuzzy
Sets and Systems. 2008;159(1):23–39.

[8] Bourke M. M., Grant Fisher D. Solution algorithms for fuzzy relational equations
with max-product composition. Fuzzy Sets and Systems. 1998;94(1):61 - 69.

[9] Loetamonphong J., Shu-Cherng F. An efficient solution procedure for fuzzy relation
equations with max-product composition. IEEE Transactions on Fuzzy Systems.
1999;7(4):441-445.

[10] Markovskii A.V. On the relation between equations with max-product composition
and the covering problem. Fuzzy Sets and Systems. 2005;153(2):261–273.

[11] Peeva K., Kyosev Y. Algorithm for Solving Max-product Fuzzy Relational Equa-
tions. Soft Computing. 2007;11(7):593–605.

[12] Jun-Lin L. On the relation between fuzzy max-Archimedean t-norm relational equa-
tions and the covering problem. Fuzzy Sets and Systems. 2009;160(16):2328–2344.

[13] Stamou G. B., Tzafestas S. G. Resolution of composite fuzzy relation equations
based on Archimedean triangular norms. Fuzzy Sets and Systems. 2001;120(3):395
- 407.

[14] Wu Y. K., Guu S. M. An Efficient Procedure for Solving a Fuzzy Relational Equa-
tion With Max-Archimedean t-Norm Composition. IEEE Transactions on Fuzzy
Systems. 2008;16(1):73-84.

[15] Bandler W., Kohout L. Semantics of implication operators and fuzzy relational
products. Int. J. Man-Machine Studies. 1980;12:89–116.
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