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Abstract

This paper studies the solvability of the max-product fuzzy relation
equations in which a negation operator is considered. Specifically, the resid-
uated negation of the product t-norm has been introduced in these equations
in order to increase the flexibility of the standard fuzzy relation equations
introduced by Sanchez in 1976. The solvability and the set of solutions of
these bipolar equations have been studied in different scenarios, depending
on the considered number of variables and equations.
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1. Introduction

Fuzzy relation equations (FREs) based on different max-t-norm com-
positions have become an extremely important research topic both from
the theoretical and applicative perspective. First of all, Sanchez introduced
these equations by using the max-min composition for simulating the re-
lationship between cause and effect in medical diagnosis problems [50, 51].
Later, Pedrycz studied max-product fuzzy relation equations showing the
applicative aspects of such equations in systems analysis, decision making
and arithmetic of fuzzy numbers [45]. Di Nola et al. provided a detailed
study on max-continuous t-norm FREs and their applications to knowledge
engineering in [13]. Thenceforward, many researchers have continued inves-
tigating different procedures to solve FREs defined with either the max-min
composition [6, 7, 24, 59], the max-product composition [5, 34, 36, 47], the
max-Archimedean t-norm composition [31, 55, 56] or other different com-
positions [2, 3, 12, 14, 15, 16, 23, 37, 38, 46, 48].
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As well as developing technical results on the resolution of FREs, the
versatility of the applications of such equations in fuzzy sets theory has been
increased. For instance, FREs play an important role in the treatment of
images [20, 21, 35, 42, 43, 44]. Specifically, max-Lukasiewicz FREs are con-
sidered for images and videos compression and decompression in [35]. Fuzzy
relation equations are also helpful to model the fuzzy inference systems
considered in fuzzy control [8] and to represent restrictions in optimization
problems [28, 29, 39, 58]. In particular, max-product fuzzy relation equa-
tions are used for optimizing wireless communication management models
in [58]. FREs have also been related to other mathematical frameworks,
such as fuzzy formal concept analysis [11, 14, 15].

Many of the applications previously mentioned require that the variables
involved in fuzzy relation equations show a bipolar character. That is,
these applications need equations containing unknown variables together
with their logical negations simultaneously. For example, let us consider
the equation 0.7 ∗ x = b, where ∗ is the product t-norm, x indicates the
level of infection one patient has in the throat and b the level of headache.
This relation between infection and headache is modeled by the coefficient
0.7. If the doctor knows that the patient has an initial infection, with truth
degree 0.5, then we have that the patient has headache with truth degree:
0.35. It is clear that this equation is a simple equation from the whole set
of equations for simulating the considered knowledge system. Suppose that
the patient has not infection and has headache, with truth value 0.8. In
this case, the equation 0.7 ∗ x = b does not work. However, if we consider
the product negation operator defined as n(x) = 1, if x = 0, and n(x) = 0,
otherwise, the previous equation can be conveniently reformulated obtaining
the following one:

(0.7 ∗ x) ∨ (0.8 ∗ n(x)) = b

which is solvable and captures the cases when the patient has the disease
but does not have the symptoms. This new type of fuzzy relation equation,
in which a negation operator is considered, is called bipolar fuzzy relation
equation. Notice that the use of the product negation increases the flex-
ibility of the usual (unipolar) fuzzy relation equations and, at the same
time, the complexity in their resolution, which becomes even more difficult
because the product negation is not involutive.

Bipolar fuzzy relation equations have been already employed usefully in
optimization problems [18, 22, 27, 33, 60]. To the best of our knowledge,
the specific literature on the resolution of bipolar fuzzy relation equations is
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really limited [30, 32]. Moreover, these papers are focused on the resolution
of bipolar fuzzy relation equations based on max-min composition with the
standard negation. Taking into account these considerations, we can ensure
that the study on the solvability of bipolar FREs is an incipient research
topic which has not been enough investigated so far.

This paper aims to provide under what conditions the solvability of
bipolar max-product fuzzy relation equations with the product negation is
guaranteed, continuing the initial study about this topic presented by the
authors in [9]. First of all, we will include the preliminary notions related
to the calculus operators which will be used in bipolar max-product fuzzy
relation equations. In the following, we will introduce the notion of bipo-
lar max-product FRE with the product negation and a unique unknown
variable. Simple scenarios will be analyzed and a characterization on the
solvability of such equations will be given. Providing sufficient and neces-
sary conditions to ensure when bipolar max-product FREs, with the product
negation and different unknown variables, are solvable will be our next goal.
Moreover, we will include different properties associated with the existence
of the greatest/least solution or a finite number of maximal/minimal so-
lutions for these last equations. We will also deal with the resolution of
bipolar max-product FRE systems containing the product negation. It is
also convenient to mention that the results obtained in this paper differ
markedly from those presented in [30, 32], since the behaviour of the mini-
mum t-norm and the product t-norm is clearly different. Some conclusions
and prospects for future work are included at the end of the paper.

2. Preliminary notions

This section introduces basic notions and examples associated with the
operators that we will use to make the computations in this paper.

Triangular norms are interesting operators which play an important role
in different fields of mathematics such as probabilistic metric spaces [53, 54],
decision making [17, 19], statistics [40], fuzzy sets theory and its applica-
tions [1, 57]. A detailed survey on the basic analytical and algebraic prop-
erties of triangular norms can be found in [26]. Below, we will include the
formal definition of a triangular norm.

Definition 1. A binary operation T : [0, 1]× [0, 1]→ [0, 1] is a triangular
norm (t-norm) if the following properties are satisfied, for all x, y, z ∈ [0, 1]:

(1) T (x, y) = T (y, x) (commutativity);
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(2) If x ≤ y then T (x, z) ≤ T (y, z) (monotonicity);

(3) T (x, 1) = x (neutral element);

(4) T (x, T (y, z)) = T (T (x, y), z) (asociativity).

T-norms are operators frequently used in applicative examples [25, 41,
52] together with their residuated implications.

Definition 2. Given a t-norm T : [0, 1] × [0, 1] → [0, 1], if there exists a
binary operation ←T : [0, 1] × [0, 1] → [0, 1] order-preserving on the first
argument and order-reversing on the second argument verifying the equiv-
alence:

T (x, y) ≤ z if and only if x ≤ z ←T y (1)

then we say that ←T is a residuated implication of T . The pair (T,←T ) is
called residuated pair and Equivalence (1) is called adjoint property.

The residuated pairs of the most commonly used t-norms in the litera-
ture will be recalled in the following example.

Example 3. Example of residuated pairs are the Gödel, product and
 Lukasiewicz t-norms together with their corresponding residuated impli-
cations, which are defined on [0, 1], as you can see below:

TP(x, y) = x · y z ←P x = min{1, z/x}

TG(x, y) = min{x, y} z ←G x =

{
1 if x ≤ z

z otherwise

TL(x, y) = max{0, x + y − 1} z ←L x = min{1, 1− x + z}

�

The residuated negation will be another fuzzy operator which will play
a key role in this paper. These residuated negation operators are defined
from the implication of a residuated pair. More information about this kind
of negations can be found in [10].
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Definition 4. Given an adjoint pair (T,←T ) defined on [0, 1], the mapping
nT : [0, 1] → [0, 1] defined as nT (x) = 0 ←T x, for all x ∈ [0, 1], is called
residuated negation. We say that nT is a strong (or involutive) residuated
negation if the equality x = nT (nT (x)) holds for all x ∈ [0, 1].

In the following example, we will introduce the residuated negations
defined from the Gödel, product and  Lukasiewicz implications.

Example 5. Taking into account the definition of the operators intro-
duced in Example 3, it is easy to see that the residuated negation associated
with the  Lukasiewicz implication is

nL(x) = 1− x

for all x ∈ [0, 1], which is involutive and commonly known in the literature
as the standard negation. On the other hand, the Gödel implication and
the product implication coincide for all x ∈ [0, 1]:

nP(x) = nG(x) =

{
1 if x = 0

0 otherwise

which are not involutive. This negation operator will be called product
negation. �

In order to make the paper self-contained, we present the Intermedi-
ate Value Theorem [4] (english translation in [49]), which will be used in
different results later on.

Theorem 6 (Intermediate Value Theorem). Let f : [a, b] → R be a
continuous function and c ∈ R be any number between f(a) and f(b) inclu-
sive. Then, there exists x ∈ [a, b] such that f(x) = c.

From now on, we will focus on solving bipolar fuzzy relation equations
based on the max-product t-norm composition. Our study will analyze the
resolution of these equations when the considered negation operator is the
non-involutive product negation.

3. Bipolar max-product FREs with the product negation

This section introduces an interesting study on how to solve bipolar max-
product fuzzy relation equations with the product negation. The results will
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be progressively presented according to their complexity, that is: (1) we will
firstly analyze when a bipolar max-product FRE with the product negation
and a unique unknown variable has solution; (2) hereunder, we will show
under what conditions bipolar max-product FREs with different unknown
variables are solvable and have a greatest (least, respectively) solution or
a finite number of maximal (minimal, respectively) solutions; (3) we will
finish this section with a characterization on the solvability of bipolar max-
product FRE systems.

3.1. Solving bipolar max-product FREs with one unknown variable

The most simple scenario which can be considered in this paper is the
study of a bipolar max-product FRE containing a unique unknown variable.
In order to provide a characterization on the solvability of these equations,
we need to include the following formal definition.

Definition 7. Let a+, a−, b ∈ [0, 1], x be an unknown variable in [0, 1], ∗
be the product t-norm, ∨ be the maximum operator and nP be the product
negation. Equation (2) is called bipolar max-product fuzzy relation equation
with the product negation.

(a+ ∗ x) ∨ (a− ∗ nP (x)) = b (2)

Before presenting under what conditions Equation (2) is solvable, we will
analyze its solvability when either a+, a− or b is equal to 0. The following
result characterizes the solvability of Equation (2) in the previous three
different cases.

Theorem 8. Let a+, a−, b ∈ [0, 1] and x be an unknown variable belonging
to [0, 1]. Then, the following statements hold:

(1) If a+ = 0, then Equation (2) is solvable if and only if b = 0 or a− = b.

(2) If a− = 0, then Equation (2) is solvable if and only if b ≤ a+.

(3) If b = 0, then Equation (2) is solvable if and only if a+ = 0 or a− = 0.

Proof. In order to demonstrate Statement (1), suppose that a+ = 0. In
that case, we obtain that Equation (2) becomes into a− ∗nP (x) = b. Taking
into account the definition of the product negation, we can obtain that b = 0
if and only if any x ∈ (0, 1] is a solution of Equation (2). In addition,
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the equality a− = b holds if and only if x = 0 is a solution Equation (2).
Therefore, Statement (1) is verified.

Now, assume that a− = 0. As a consequence, Equation (2) is given by
a+ ∗ x = b. Due to the product t-norm is a continuous order-preserving
mapping on [0, 1] and the equalities a+ ∗ 0 = 0 and a+ ∗ 1 = a+ hold, we
can assert by the Bolzano’s theorem that there exists x ∈ [0, 1] such that
a+ ∗ x = b if and only if b ≤ a+. Hence, we obtain that Statement (2) is
satisfied.

Finally, if b = 0, then Equation (2) becomes into (a+∗x)∨(a−∗nP (x)) =
0, which is solvable if and only if a+ ∗ x = 0 and a− ∗ nP (x) = 0. According
to the definition of the product negation, we can deduce that Equation (2)
is solvable if and only if a+ = 0 or a− = 0. As a result, we conclude that
Statement (3) holds. �

After studying the most trivial cases which can be given in a bipolar
max-product FRE, we will continue our research assuming that each known
variable appearing in bipolar max-product FREs is different from zero.

A characterization on the solvability of bipolar max-product FREs with
the product negation and a unique unknown variable is provided by the
next theorem.

Theorem 9. Let a+, a−, b ∈ (0, 1] and x be an unknown variable belonging
to [0, 1]. The bipolar max-product FRE given by Equation (2) is solvable if
and only if a− = b or b ≤ a+. In this case, at most two solutions exists:
x = 0 or/and b/a+, which are related to the conditions a− = b and b ≤ a+,
respectively.

Proof. First of all, we will prove that if a− = b or a+ ≥ b then Equation (2)
has solution. On the one hand, if a− = b then x = 0 is clearly a solution
of Equation (2). On the other hand, we suppose that a+ ≥ b. Now, we
consider the mapping f : [0, 1] → [0, 1] defined as f(x) = a+ ∗ x, which is
continuous. Since b ∈ (0, 1] is a number between f(0) = a+ ∗ 0 = 0 and
f(1) = a+∗1 = a+, applying the Intermediate Value Theorem (Theorem 6),
there exists y ∈ [0, 1] such that f(y) = a+ ∗ y = b. In addition, we can
ensure that the previous value y ∈ [0, 1] is unique since f is a strictly
order-preserving mapping. Specifically, by the definition of the product
implication, y = b ←P a+. In the following, we will demonstrate that
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y = b←P a+ is a solution of Equation (2):

(a+ ∗ y) ∨ (a− ∗ nP (y)) = (a+ ∗ (b←P a+)) ∨ (a− ∗ nP (b←P a+))

= (a+ ∗ b/a+) ∨ (a− ∗ nP (b/a+))

= b ∨ (a− ∗ 0) = b ∨ 0 = b

being b 6= 0 by hypothesis. Consequently, we obtain that Equation (2) is
solvable.

In order to prove the counterpart, we will suppose that a− 6= b and
a+ < b, and we will prove that Equation (2) is not solvable. Clearly, for
each x ∈ [0, 1], we have that the inequality a+ ∗ x < b holds. Therefore,
Equation (2) is solvable if and only if there exists x ∈ [0, 1] such that
a− ∗ nP (x) = b. However, this last condition is not verified, since nP can
only take either the value 0 or the value 1 and, by hypothesis, a− 6= b and
b 6= 0. Hence, we can conclude that Equation (2) is not solvable.

Finally, when Equation (2) is solvable, it has at most two solutions which
are given by x = 0 and x = b ←P a+. It is easy to see that x = b ←P

a+ = b/a+ is the greatest solution when both x = 0 and x = b←P a+ solve
Equation (2). �

An illustrative example will be shown in order to clarify the previous
theorem.

Example 10. A simple bipolar max-product FRE is provided by Equa-
tion (3) and we will apply Theorem 9 to check whether such equation is
solvable or not.

(0.5 ∗ x) ∨ (0.2 ∗ nP (x)) = 0.3 (3)

Observe that, 0.2 6= 0.3 and 0.5 ≥ 0.3. Therefore, we can ensure that the
hypothesis required in Theorem 9 are satisfied and Equation (3) is solvable.
Indeed, x = 0.3←P 0.5 = 0.6 is a solution, as the next equality shows:

(0.5 ∗ 0.6) ∨ (0.2 ∗ nP (0.6)) = (0.5 ∗ 0.6) ∨ (0.2 ∗ 0) = 0.3 ∨ 0 = 0.3

Moreover, x = 0.3←P 0.5 = 0.6 is the unique solution since x = 0 does not
verify Equation (3), as we can see below:

(0.5 ∗ 0) ∨ (0.2 ∗ nP (0)) = (0.5 ∗ 0) ∨ (0.2 ∗ 1) = 0 ∨ 0.2 = 0.2 6= 0.3

�
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Once we have studied bipolar max-product fuzzy relation equations with
the product negation and containing only one unknown variable, our follow-
ing goal consists in increasing the number of unknown variables appearing
in a bipolar max-product FRE with the product negation and studying
sufficient and necessary conditions to guarantee its solvability.

3.2. Solving bipolar max-product FREs with different unknown variables

This section includes results associated with the solvability of bipolar
max-product FREs with the product negation and a finite number of differ-
ent unknown variables. Besides, we will present the conditions under which
the existence of either a greatest (least, respectively) solution or a finite
number of maximal (minimal, respectively) solutions can be guaranteed in
these equations.

To begin with this section, we will present a result which characterizes
the solvability of a bipolar max-product FRE when the independent term
is equal to zero. The consideration of this case will allow us to obtain under
what conditions a general bipolar max-product FRE with different unknown
variables is solvable in an easier way.

Theorem 11. Given a+j , a
−
j ∈ [0, 1] and xj an unknown variable belonging

to [0, 1], for all j ∈ {1, . . . ,m}. The bipolar max-product fuzzy relation
equation

m∨
j=1

(a+j ∗ xj) ∨ (a−j ∗ nP (xj)) = 0 (4)

is solvable if and only if, for each j ∈ {1, . . . ,m}, either the equality a+j = 0
or a−j = 0 is satisfied.

Proof. First of all, we will suppose that, for each j ∈ {1, . . . ,m}, either
the equality a+j = 0 or a−j = 0 is satisfied, and we will find a solution of
Equation (4). Given k ∈ {1, . . . ,m}, if a+k = 0, then the variable x̂k of the
solution will be 1, since, in this case, we obtain:

(a+k ∗ x̂k) ∨ (a−k ∗ nP (x̂k)) = 0 ∨ (a−k ∗ 0) = 0

Otherwise, if a−k = 0, then we consider x̂k = 0, which leads us to the same
result:

(a+k ∗ x̂k) ∨ (a−k ∗ nP (x̂k)) = (a−k ∗ 0) ∨ 0 = 0
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Therefore, the obtained tuple (x̂1, . . . , x̂m) verifies that:

m∨
j=1

(a+j ∗ x̂j) ∨ (a−j ∗ nP (x̂j)) = 0

and, as a consequence, it is a solution of Equation (4).
Now, we suppose that Equation (4) is solvable and the tuple (x1, . . . , xm)

is a solution of such equation. We will assume that there exists k ∈
{1, . . . ,m} such that a+k > 0 and a−k > 0, and we will obtain a contra-
diction.

If xk = 0, then nP (xk) = 1, and therefore the chain of inequalities below
holds

m∨
j=1

(a+j ∗ xj) ∨ (a−j ∗ nP (xj)) ≥ (a−k ∗ nP (xk)) = a−k > 0

which contradicts that (x1, . . . , xm) is a solution of Equation (4). On the
other hand, if xk > 0, due to the fact that a+k > 0, we obtain the same strict
inequality:

m∨
j=1

(a+j ∗ xj) ∨ (a−j ∗ nP (xj)) ≥ (a+k ∗ xk) > 0

which also contradicts the hypothesis. Thus, we can ensure that either the
equality a+j = 0 or a−j = 0 holds, for all j ∈ {1, . . . ,m}. �

The following theorem characterizes the solvability of the proper bipolar
max-product FREs containing different unknown variables.

Theorem 12. Given a+j , a
−
j ∈ [0, 1], b ∈ (0, 1] and xj an unknown variable

belonging to [0, 1], for all j ∈ {1, . . . ,m}. The bipolar max-product fuzzy
relation equation

m∨
j=1

(a+j ∗ xj) ∨ (a−j ∗ nP (xj)) = b (5)

is solvable if and only if b ≤ max{a+j | j ∈ {1, . . . ,m}} or there exists k ∈
{1, . . . ,m} such that a−k = b.

Proof. We will suppose that b ≤ max{a+j | j ∈ {1, . . . ,m}} and we will
prove that Equation (5) is solvable. Clearly, J = {j ∈ {1, . . . ,m} | b ≤ a+j }
is a non-empty set. Furthermore, by definition of the product residuated
implication, the following statements hold, for each j ∈ {1, . . . ,m}:
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(i) If j ∈ J , then b←P a+j = b/a+j
1 and we obtain the following equalities

a+j ∗ (b←P a+j ) = b and a−j ∗ nP (b←P a+j ) = 0.

(ii) If j /∈ J , then we obtain that b ←P a+j = 1 and the following expres-
sions hold a+j ∗ (b←P a+j ) = a+j < b and a−j ∗ nP (b←P a+j ) = 0.

From (i) and (ii), we can conclude that the tuple (b ←P a+1 , . . . , b ←P a+m)
is a solution of Equation (5).

Now, we will suppose that there exists k ∈ {1, . . . ,m} such that a−k = b
and max{a+j | j ∈ {1, . . . ,m}} < b and we will demonstrate that Equa-
tion (5) is solvable. Notice that, if b ≤ max{a+j | j ∈ {1, . . . ,m}}, then
we are in the case above, and thus Equation (5) is solvable. By hypoth-
esis, a+j < b for each j ∈ {1, . . . ,m}, and therefore, b ←P a+j = 1. As a
consequence, a+j ∗ (b ←P a+j ) = a+j < b and a−j ∗ nP (b ←P a+j ) = 0, for
each j ∈ {1, . . . ,m}. Hence, we obtain straightforwardly that the tuple
(x̂1, . . . , x̂k, . . . , x̂m) with x̂k = 0 and x̂j = 1, for each j ∈ {1, . . . ,m} such
that j 6= k, is a solution of Equation (5).

The proof of the counterpart is analogous to the proof of Theorem 9. �

From now on, explanatory examples will be included for a better under-
standing of each result.

Example 13. This example will consider the bipolar max-product FRE
with three unknown variables x1, x2, x3 ∈ [0, 1] given by the following equa-
tion:

(0.4∗x1)∨ (0.7∗nP (x1))∨ (0.2∗x2)∨ (0.1∗nP (x2))∨ (0.5∗x3)∨ (0.2∗nP (x3)) = 0.3 (6)

We can ensure that Equation (6) is solvable because the hypothesis
required in Theorem 12 are verified, that is, max{0.4, 0.2, 0.5} = 0.5 ≥ 0.3.
Following an analogous reasoning to the one given in the proof of such
theorem, we obtain that the tuple (0.75, 1, 0.6) is a solution of Equation (6).
In addition, we can make simple computations in order to obtain all possible
solutions of Equation (6). For instance, the tuple (0.5, 0, 0.6) is another
solution of Equation (6):

1Notice that, if a+j = 0, then a+j < b, and thus a+j /∈ J .

11



(0.4 ∗ 0.5) ∨ (0.7 ∗ nP (0.5)) ∨ (0.2 ∗ 0) ∨ (0.1 ∗ nP (0)) ∨ (0.5 ∗ 0.6) ∨ (0.2 ∗ nP (0.6)) =

0.2 ∨ 0 ∨ 0 ∨ 0.1 ∨ 0.3 ∨ 0 =

0.3

�

In view of the results obtained in the previous example, one can ask
whether (0.75, 1, 0.6) is the greatest solution of Equation (6) or if there
exists a finite number of maximal solutions for such equation. A similar
question with respect to the existence of its least solution or different min-
imal solutions can also arise. These issues will be analyzed in the following
section.

3.2.1. Computing maximal and minimal solutions

Next, we are interested in knowing when a bipolar max-product FRE
with the product negation and different variables has either a greatest (least,
respectively) solution or a finite number of maximal (minimal, respectively)
solutions. To reach this goal, we need to introduce the following results.

Theorem 14. Given a+j , a
−
j ∈ [0, 1], b ∈ (0, 1] and xj an unknown variable

in [0, 1], for each j ∈ {1, . . . ,m}. If Equation (5) is a solvable bipolar
max-product FRE, then the following statements hold:

(1) If b ≤ max{a+j | j ∈ {1, . . . ,m}}, the set of solutions of Equation (5)
has a greatest element.

(2) If a+j < b for each j ∈ {1, . . . ,m}, then the set of maximal solutions
of Equation (5) is finite. Moreover, the number of maximal solutions
is:

card({k ∈ {1, . . . ,m} | a−k = b})

Proof. In order to prove Statement (1), suppose that the inequality b ≤
max{a+j | j ∈ {1, . . . ,m}} holds. By an analogous reasoning to the proof
given in Theorem 12, we obtain that the tuple (b ←P a+1 , . . . , b ←P a+m)
is a solution of Equation (5). In the following, we will prove that (b ←P

a+1 , . . . , b ←P a+m) is the greatest solution of Equation (5), by reduction to
the absurd.

Hence, we suppose that there exists a tuple (x1, . . . , xm) being a solution
of Equation (5) such that (b ←P a+1 , . . . , b ←P a+m) < (x1, . . . , xm). Then,
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there exists k ∈ {1, . . . ,m} such that xk > b ←P a+k . According to the
adjoint property, we can assert that a+k ∗xk > b. As a result, we obtain that

m∨
j=1

(a+j ∗ xj) ∨ (a−j ∗ nP (xj)) =
m∨
j=1

(a+j ∗ xj) ≥ a+k ∗ xk > b

which lead us to conclude that (x1, . . . , xm) is not a solution of Equa-
tion (5), in contradiction with the hypothesis. Hence, we can ensure that
(b ←P a+1 , . . . , b ←P a+m) is the greatest solution of Equation (5). That is,
Statement (1) holds.

Now, assume that a+j < b for each j ∈ {1, . . . ,m}, in order to demon-
strate Statement (2). Given A = {k ∈ {1, . . . ,m} | a−k = b} and B the set
of maximal solutions of Equation (5), we consider the mapping f : A → B
defined as f(k) = (1, . . . , 1, 0, 1, . . . , 1), being the element 0 in the k-th posi-
tion of the tuple. In order to prove that the cardinal of A coincides with the
cardinal of B, we will demonstrate that f is a bijection between A and B.

First of all, let us see that f is well-defined. Consider a fixed k ∈ A. By
an analogous reasoning to the proof of Theorem 12, we can ensure that the
tuple (1, . . . , 1, 0, 1, . . . , 1) is a solution of Equation (5), being the element
0 in the k-th position of the tuple. Suppose that there exists another so-
lution (x̂1, . . . , x̂k, . . . , x̂m) of Equation (5) such that (1, . . . , 1, 0, 1, . . . , 1) <
(x̂1, . . . , x̂k, . . . , x̂m). Therefore, x̂k > 0 and x̂j = 1, for each j ∈ {1, . . . ,m}
with j 6= k, in order to (x̂1, . . . , x̂k, . . . , x̂m) be a greater solution. As a
consequence, nP (x̂j) = 0 for each j ∈ {1, . . . ,m} and so,

m∨
j=1

(a+j ∗ xj) ∨ (a−j ∗ nP (xj)) =
m∨
j=1

(a+j ∗ xj)

= a+1 ∨ · · · ∨ (a+k ∗ xk) ∨ · · · ∨ a+m
< b

since, by hypothesis, a+j < b for each j ∈ {1, . . . ,m}. Consequently,
the tuple (x̂1, . . . , x̂k, . . . , x̂m) is not a solution of Equation (5). Thus,
(1, . . . , 1, 0, 1, . . . , 1) is a maximal solution of Equation (5), which permits
us to assert that f is well-defined. Moreover, given k1, k2 ∈ A with k1 6= k2,
then f(k1) is clearly different than f(k2), since the element 0 is in the k1-th
position in f(k1) while the element 0 appears in the k2-th position in f(k2).
Therefore, f is an order-embedding mapping.

Now, we will prove that f is also onto. Let (x1, . . . , xm) ∈ B. Clearly,
as a+j < b for each j ∈ {1, . . . ,m}, we have that a+j ∗ xj < b. Therefore,
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as the tuple (x1, . . . , xm) is a solution of Equation (5), we can ensure that
there exists k ∈ {1, . . . ,m} such that a−k ∗ nP (xk) = b. According to the
definition of the product negation, we obtain that nP (xk) can only take
the values 0 and 1. Since b 6= 0, we deduce that nP (xk) = 1, and as a
consequence, xk = 0. This fact allows us to ensure that a−k = b, that is,
k ∈ A. Due to (x1, . . . , xm) is a maximal solution of Equation (5) and
the inequality a+j ∗ xj < b holds, for each j ∈ {1, . . . ,m}, we can assert
that xj = 1 for each j ∈ {1, . . . ,m} with j 6= k. Hence, we obtain that
f(k) = (1, . . . , 1, 0, 1, . . . , 1) = (x1, . . . , xm), being the element 0 in the k-th
position of the tuple.

Due to the mapping f is a bijection, we can conclude that the number
of maximal solutions is card({k ∈ {1, . . . ,m} | a−k = b}). Equivalently,
Statement (2) is satisfied. �

As a consequence of Theorem 14, the next corollary arises.

Corollary 15. Given a+j , a
−
j ∈ [0, 1], b ∈ (0, 1] and xj an unknown variable

in [0, 1], for each j ∈ {1, . . . ,m}. Consider that Equation (5) is a solvable
bipolar max-product FRE, then the following statements hold:

(1) If max{a+j | j ∈ {1, . . . ,m}} ≥ b, then the greatest solution of Equa-
tion (5) is given by the tuple (b←P a+1 , . . . , b←P a+m).

(2) If a+j < b for each j ∈ {1, . . . ,m}, then the set of maximal solutions
of Equation (5) is given by:

{(1, . . . , 1, xk, 1, . . . , 1) | xk = 0 with k ∈ K−P }

where K−P = {k ∈ {1, . . . ,m} | a−k = b}

We also have to distinguish different cases to ensure the existence of the
least solution and the set of minimal solutions of a solvable bipolar max-
product FRE with different variables. It is important to mention that the
set of minimal solutions of such equation can be empty, as the following
theorem shows.

Theorem 16. Given a+j , a
−
j ∈ [0, 1], b ∈ (0, 1] and xj an unknown variable

belonging to [0, 1], for each j ∈ {1, . . . ,m}. Consider that Equation (5) is
a solvable bipolar max-product FRE. Then, the following statements hold:

(1) If there exists k ∈ {1, . . . ,m} such that a−k = b and a−j ≤ b, for each
j ∈ {1, . . . ,m}, then the set of solutions of Equation (5) has a least
element.
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(2) If there exist k1, k2 ∈ {1, . . . ,m} such that a−k1 = b and a−k2 > b, then
the set of solutions of Equation (5) has no minimal elements.

(3) If a−j 6= b for each j ∈ {1, . . . ,m}, then the set of minimal solutions
of Equation (5) is finite. Moreover, the number of minimal solutions
is:

card({k ∈ {1, . . . ,m} | a+k ≥ b and a−j < b for each j 6= k})

Proof. First of all, to prove Statement (1), we will suppose that there
exists k ∈ {1, . . . ,m} such that a−k = b and a−j ≤ b, for each j ∈ {1, . . . ,m}.
Then, the tuple (0, . . . , 0) is clearly a solution of Equation (5), since:

m∨
j=1

(a+j ∗ 0) ∨ (a−j ∗ nP (0)) =
m∨
j=1

(a−j ∗ nP (0)) =
m∨
j=1

a−j = b

Clearly, any other solution of Equation (5) is greater than (0, . . . , 0). As a
consequence, (0, . . . , 0) is the least element of the set of solutions of Equa-
tion (5). That is, Statement (1) is satisfied.

Now, in order to demonstrate Statement (2), we suppose that there exist
k1, k2 ∈ {1, . . . ,m} such that a−k1 = b and a−k2 > b. We will prove that the
set of solutions of Equation (5) has no minimal elements by reduction to
the absurd.

Let us assume that (x1, . . . , xm) is a minimal solution of Equation (5).
First of all, we will see that xk1 = 0 and xk2 > 0. On the one hand, suppose
that xk1 > 0. Since equalities a+k1 ∗ 0 = 0 and a−k1 ∗ nP (0) = a−k1 = b are
straightforwardly satisfied, we obtain that the tuple (x1, . . . , xk1−1, 0, xk1+1, . . . , xm)
is another solution of Equation (5), which is strictly smaller than (x1, . . . , xm).
Thus, we can ensure than xk1 = 0. On the other hand, let us assume that
xk2 = 0. In this case, as a−k2 > b, the following inequality holds

m∨
j=1

(a+j ∗ xj) ∨ (a−j ∗ nP (xj)) ≥ a−k2 ∗ nP (xk2) = a−k2 > b

As a result, the tuple (x1, . . . , xm) is not a solution of Equation (5). Con-
sequently, we can ensure that xk2 > 0. Therefore, we can assert that
xk1 = 0 and xk2 > 0. In addition, notice that a−k1 ∗ nP (xk1) = b. Due
to the fact that (x1, . . . , xm) is a solution of Equation (5), the inequal-
ity a+k2 ∗ xk2 ≤ b is verified. Then, as the product t-norm is a mono-

tonic operator, we obtain that inequality a+k2 ∗
xk2

2
≤ b also holds. No-

tice that, since xk2 > 0, then
xk2

2
< xk2 . Since a−k1 ∗ nP (xk1) = b, the
15



tuple (x1, . . . , xk2−1,
xk2

2
, xk2+1 . . . , xm) is a solution of Equation (5), which

satisfies (x1, . . . , xk2−1,
xk2

2
, xk2+1 . . . , xm) < (x1, . . . , xm). As a result, we

conclude that (x1, . . . , xm) is not a minimal solution, in contradiction with
the hypothesis, and thus we can assert that Statement (2) holds.

Finally, we will show that Statement (3) is verified. Given A = {k ∈
{1, . . . ,m} | a+k ≥ b and a−j ≤ b for each j 6= k} and B the set of minimal
solutions of Equation (5), we will demonstrate that the mapping f : A→ B,
which associates each k ∈ A with a tuple (0, . . . , 0, b←P a+k , 0 . . . , 0), being
the element b←P a+k in the k -th position of the tuple, is a bijection.

Now, we will prove that f is well-defined. Consider a fixed k ∈ A. Since
a+k ≥ b and b 6= 0, we obtain that b←P a+k = b/a+k > 0 and consequently, the
following equalities a+k ∗ (b←P a+k ) = b and a−k ∗nP (b←P a+k ) = 0 are satis-
fied. In addition, since the inequality a−j < b holds for each j ∈ {1, . . . ,m}
with j 6= k, we can ensure that the tuple (0, . . . , 0, b ←P a+k , 0, . . . , 0)
is a solution of Equation (5). Suppose that there exists another differ-
ent tuple (x1, . . . , xk, . . . , xm) being solution of Equation (5) and satisfying
that (x1, . . . , xk, . . . , xm) < (0, . . . , 0, b ←P a+k , 0, . . . , 0). Then, we have
that xk < b ←P a+k and xj = 0, for each j ∈ {1, . . . ,m} with j 6= k.
Clearly, as the product t-norm is strictly order-preserving, the inequal-
ity a+k ∗ xk < b is also verified. Finally since, by hypothesis, a−j 6= b
for each j ∈ {1, . . . ,m}, we can conclude that a−j ∗ nP (xj) 6= b for each
j ∈ {1, . . . ,m}, and thus, (x1, . . . , xm) is not a solution of Equation (5).
Therefore, (0, . . . , 0, b←P a+k , 0, . . . , 0) is a minimal solution of Equation (5)
and so, we can ensure that f(k) = (0, . . . , 0, b ←P a+k , 0, . . . , 0) ∈ B, that
is, the mapping f is well-defined.

In the following, we will see that f is an order-embedding mapping.
Given k1, k2 ∈ A with k1 6= k2, the tuples (0, . . . , 0, b ←P a+k1 , 0, . . . , 0) and
(0, . . . , 0, b←P a+k2 , 0, . . . , 0) are clearly different.

It remains to prove that f is an onto mapping. Given a minimal solution
(x1, . . . , xm) ∈ B, we will prove that there exists an element k ∈ A such
that f(k) = (x1, . . . , xm). Taking into account that Equation (5) is solvable
and a−j 6= b for each j ∈ {1, . . . ,m}, by Theorem 12, we can ensure that
max{a+j | j ∈ {1, . . . ,m}} ≥ b. In addition, due to (x1, . . . , xm) is a solution
of Equation (5), following a similar reasoning to the proof of Theorem 12, we
obtain that there exists k ∈ {1, . . . ,m} such that a+k ≥ b and xk = b←P a+k .

Now, suppose that there exists j ∈ {1, . . . ,m} with j 6= k such that
a−j > b and we will obtain a contradiction. Due to (x1, . . . , xm) is a so-
lution of Equation (5) and a−j > b, then we can guarantee that xj 6=
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0. As product t-norm is a strictly order-preserving mapping, the tuple
(x1, . . . , xk, . . . ,

xj

2
, . . . , xm) is also a solution of Equation (5) verifying that

(x1, . . . , xk, . . . ,
xj

2
, . . . , xm) < (x1, . . . , xm). We have supposed, without

loss of generality, that k < j. This fact leads us to a contradiction since
(x1, . . . , xm) is a minimal solution of Equation (5), by hypothesis. Hence,
we can conclude that the inequality a−j ≤ b holds, for each j ∈ {1, . . . ,m}
with j 6= k. That is, k ∈ A.

Hereafter, we will see that f(k) = (x1, . . . , xm). We have already proved
that there exists k ∈ {1, . . . ,m} such that xk = b←P a+k and the inequality
a−j ≤ b holds, for each j ∈ {1, . . . ,m} with j 6= k. Suppose that there exists
j ∈ {1, . . . ,m} with j 6= k such that xj > 0 and we will see that this fact
contradicts that (x1, . . . , xm) is a minimal solution. Since a−j ≤ b, we obtain
a+j ∗ 0 = 0 and a−j ∗nP (0) = a−j ≤ b. As a result, we can ensure that the tu-
ple (x1, . . . , xj−1, 0, xj+1, . . . , xm) is also a solution of Equation (5) satisfying
that (x1, . . . , xj−1, 0, xj+1, . . . , xm) < (x1, . . . , xj, . . . , xm). This is a contra-
diction with respect to (x1, . . . , xm) is a minimal solution of Equation (5).
Therefore, the equality xj = 0 is verified, for each j ∈ {1, . . . ,m} with
j 6= k. Finally, we can conclude that f(k) = (0, . . . , 0, b←P a+k , 0, . . . , 0) =
(x1, . . . , xm), and thus Statement (3) holds. �

The following corollary is straightforwardly obtained from Theorem 16.

Corollary 17. Given a+j , a
−
j ∈ [0, 1], b ∈ (0, 1], xj an unknown variable

belonging to [0, 1], for each j ∈ {1, . . . ,m}, and a solvable bipolar max-
product FRE as in Equation (5). Then, the following statements hold:

(1) If there exists k ∈ {1, . . . ,m} such that a−k = b and a−j ≤ b, for each
j ∈ {1, . . . ,m}, then the least solution of Equation (5) is (0, . . . , 0).

(2) If a−j 6= b for each j ∈ {1, . . . ,m}, then the set of minimal solutions
of Equation (5) is given by:

{(0, . . . , 0, xk, 0, . . . , 0) | xk = b←P a+k with k ∈ K+
P }

where K+
P = {k ∈ {1, . . . ,m} | a+k ≥ b and a−j < b for each j 6= k}.

Next example clarifies the previous results about the existence both
the greatest/least solution and maximal/minimal solutions analyzing the
bipolar max-product FRE given in Example 13.

Example 18. In Example 13 we showed that Equation (6):
17



(0.4 ∗ x1) ∨ (0.7 ∗ nP (x1)) ∨ (0.2 ∗ x2) ∨ (0.1 ∗ nP (x2)) ∨ (0.5 ∗ x3) ∨ (0.2 ∗ nP (x3)) = 0.3

is solvable. Now, by Theorems 14 and 16, we will study whether this
equation has a greatest/least solution and maximal/minimal solutions. Tak-
ing into account that the hypothesis required in Statement (1) of Theo-
rem 14 is verified, that is max{0.4, 0.2, 0.5} ≥ 0.3, we can guarantee that
the greatest solution exists, which is (0.75, 1, 0.6).

Applying Theorem 16 (since condition required in Statement (3) is ver-
ified) we obtain that this equation has only one minimal solution since:

card({k ∈ {1, 2, 3} | a+k ≥ b and a−j < b for each j 6= k}) = card{1} = 1

Making the corresponding computations, we have that (0.75, 0, 0) is a
minimal solution. It is worth highlighting that the tuple (0.75, 0, 0) is not
the least solution of Equation (6). Indeed, we can easily see that the tuples
(x, 0, 0.6) with 0 < x < 0.75 are solutions of Equation (6), being (0.75, 0, 0)
and (x, 0, 0.6) incomparable tuples. Moreover, as we show below, the tuple
(0, 0, 0.6) is not a solution of Equation (6):

(0.4 ∗ 0) ∨ (0.7 ∗ 1) ∨ (0.2 ∗ 0) ∨ (0.1 ∗ 1) ∨ (0.5 ∗ 0.6) ∨ (0.2 ∗ 0) = 0.7 6= 0.3

Now, modifying the previous equation, we can consider Equation (7) and
apply Theorems 12 and 16 in order to assert that Equation (7) is solvable
and it does not have minimal solutions.

(0.4∗x1)∨ (0.7∗nP (x1))∨ (0.2∗x2)∨ (0.1∗nP (x2))∨ (0.5∗x3)∨ (0.9∗nP (x3)) = 0.3 (7)

This fact is due to the number of minimal solutions in Equation (7) is:

card({k ∈ {1, 2, 3} | a+k ≥ b and a−j < b for each j 6= k}) = card{∅} = 0

�

Once the theoretical foundations of the solvability of bipolar max-product
FREs have been presented, a toy example is shown below in order to illus-
trate how a bipolar max-product FRE can be used to represent a real-world
situation. Specifically, the overheating of a motor will be modeled by means
of a bipolar max-product FRE. Furthermore, given an overheating value,
the bipolar FRE is used to determine what is the overheating due to and
how a technician should perform in order to solve it.
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Example 19. The suitable behaviour of a motor directly depends on main-
taining its temperature under a certain threshold. To carry out this task,
a group of experts stated that controlling the level of water, the level of oil
and the radiator fan is crucial.

Consider the variables x1, x2 ∈ [0, 1] which represent the truth value
of low water and low oil, respectively, where 1 indicates empty water/oil
container and 0 that the quantity of water/oil has exceeded the permitted
limit. Let x3 ∈ {0, 1} be a variable such that x3 = 0 corresponds to the
radiator fan is working and x3 = 1 to the radiator fan is stopped. The level
of overheating of the motor is represented by a value b ∈ [0, 1], where 0
indicates a correct temperature and 1 a critical level of overheating.

After a technical study, the experts reached the following conclusions on
the performance of the motor:

• The motor overheating is directly proportional to the lack of water,
with proportionality constant 0.4. Nevertheless, an excess of water
turns out to be even more dangerous for the motor, since in such case
it overheats at 0.7.

Hence, the overheating being caused by the level of water can be mod-
eled by means of the expression (0.4 ∗ x1) ∨ (0.7 ∗ nP (x1)). Observe
that, if the water container is almost full but not exceeding the lim-
its then the level of overheating is low, since x1 > 0 and therefore
nP (x1) = 0.

• Similarly, the motor also overheats directly proportional to the lack
of oil, but in this case the proportionality constant is 0.2. Besides,
if the oil exceeds the permitted maximum, it causes an overheating
of 0.1. This behaviour can be interpreted by using the expression
(0.2 ∗ x2) ∨ (0.1 ∗ nP (x2)).

• The radiator fan has a problem and it sometimes suddenly stops.
When this happens, the motor overheats up to 0.5. Furthermore, the
usual behaviour of the radiator makes that the motor overheats at
0.2. In this case, we obtain the expression (0.5 ∗ x3) ∨ (0.2 ∗ nP (x3)).

Now, considering that the level of water, the level of oil and the perfor-
mance of the radiator fan are the only factors which affect to the ovearheat-
ing and basing on the experts knowledge, we can model the behaviour of the
level of overheating of the motor through the following bipolar max-product
fuzzy relation equation:
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(0.4 ∗x1)∨ (0.7 ∗nP (x1))∨ (0.2 ∗x2)∨ (0.1 ∗nP (x2))∨ (0.5 ∗x3)∨ (0.2 ∗nP (x3)) = b (8)

This equation is a useful tool in order to know the reasons/causes of
a given overheating. For example, if a technician observes that the motor
presents an overheating of 0.3, in order to know the values of the other
variables (causes) which imply this level of overheating, we need to solve
Equation (8) when b = 0.3.

Notice that, the solvability of the obtained equation was already studied
in Examples 13 and 18. Therefore, we obtain that Equation (8) is solvable,
where (0.75, 1, 0.6) is its greatest solution and it has only one minimal so-
lution, the tuple (0.75, 0, 0).

The most critical cases are then (0.75, 1, 0.6) and (0.75, 0, 0). First of all,
since the tuple (0.75, 0, 0) is the unique minimal solution of Equation (8),
we deduce that there are no solutions such that x1 = 0, and thus, the water
container is not over the permitted limit. Secondly, we can assert that the
level of oil is not giving rise to the overheating, as the variable x2 can be
either 0, 1, or any value among them. Indeed, a careful sight leads us to
conclude that the level of oil can be ignored in this matter, since in the
worst case it may result in an overheating of 0.2, but this overheating is
already obtained due to the bad conditions of the radiator fan.

Last but not least, from the greatest solution of Equation (8), the tuple
(0.75, 1, 0.6), we deduce that the variable x3 cannot be equal to 1. Hence,
according to the fact that x3 ∈ {0, 1}, we conclude that x3 = 0, and thus
the radiator fan is working properly.

Consequently, basing on the conclusions which we have obtained, we
would suggest to the technician refilling the water container, but being
careful so that it does not exceed the limits. �

3.3. Solving bipolar max-product FRE systems

After characterizing the solvability of bipolar max-product FREs with
different variables and the product negation, and providing information
about the algebraic structure of the set of solutions, we will give a further
step to our research. The following goal will be to solve bipolar max-product
FRE systems.

According to the results presented until now, one can think that the con-
ditions required to solve an arbitrary system of bipolar max-product FREs
will be very similar to the ones given in Theorems 9 and 12. However, the
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following theorem shows that this reasoning is not true.

Theorem 20. Let a+ij, a
−
ij, xj ∈ [0, 1] and bi ∈ (0, 1], for each i ∈ {1, . . . , n}

and j ∈ {1, . . . ,m}. Then the bipolar max-product FRE system given by

m∨
j=1

(a+ij ∗ xj) ∨ (a−ij ∗ nP (xj)) = bi, i ∈ {1, . . . , n} (9)

is solvable if and only if there exist two index sets J+, J− ⊆ {1, . . . ,m} with
J+ ∩ J− = ∅ such that, one of the following statements is verified, for each
i ∈ {1, . . . , n}:

(1) there exists j ∈ J+ such that a+ij ≥ bi and bi ←P a+ij ≤ bh ←P a+hj, for
each h ∈ {1, . . . , n}.

(2) there exists j ∈ J− such that a−ij = bi and a−hj ≤ bh for each h ∈
{1, . . . , n}.

Proof. Suppose that there exist two index sets J+, J− ⊆ {1, . . . ,m} with
J+ ∩ J− = ∅, such that each i ∈ {1, . . . , n} satisfies either Statement (1)
or (2). Consider the set J−s = {j ∈ J− | a−hj ≤ bh, for each h ∈ {1, . . . , n}}
and the tuple (x̂1, . . . , x̂m) defined, for each j ∈ {1, . . . ,m}, as:

x̂j =


0 if j ∈ J−s

min{bk ←P a+kj | k ∈ {1, . . . , n}} otherwise

Now, we will see that (x̂1, . . . , x̂m) is a solution of System (9). Given i ∈
{1, . . . , n}, by hypothesis, one of the following statements is verified:

• there exists j ∈ J+ such that a+ij ≥ bi and bi ←P a+ij ≤ bh ←P a+hj, for

each h ∈ {1, . . . , n}. In this case, x̂j = bi ←P a+ij (note that j /∈ J−s
because j ∈ J+ and J+ ∩ J− = ∅). By the definition of the product
implication, we obtain that a+ij ∗ x̂j = bi. Since by hypothesis bi > 0,
we can ensure that x̂j > 0, and thus nP (x̂j) = 0 and a−ij ∗ nP (x̂j) = 0.

• there exists j ∈ J− such that a−ij = bi and a−hj ≤ bh for each h ∈
{1, . . . , n}. Notice that, it is straightforwardly obtained j ∈ J−s .
Therefore, x̂j = 0, and clearly a+ij ∗ x̂j = 0 and a−ij ∗ nP (x̂j) = a−ij = bi.
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Therefore, we can ensure that there exists j ∈ {1, . . . ,m} verifying that
(a+ij ∗ x̂j) ∨ (a−ij ∗ nP (x̂j)) = bi.

In the following, we will prove that the elements x̂j′ in (x̂1, . . . , x̂m) with
j′ ∈ {1, . . . ,m} and j′ 6= j verify (a+ij′ ∗ x̂j′) ∨ (a−ij′ ∗ nP (x̂j′)) ≤ bi. We have
that, for every j′ ∈ {1, . . . ,m}, the following statements hold:

• If j′ ∈ J−s then a−hj′ ≤ bh, for each h ∈ {1, . . . , n}. In particular,

a−ij′ ≤ bi. Therefore, as x̂j′ = 0, we obtain that

(a+ij′ ∗ x̂j′) ∨ (a−ij′ ∗ nP (x̂j′)) = 0 ∨ a−ij′ = a−ij′ ≤ bi

• If j′ /∈ J−s , then x̂j′ = min{bh ←P a+hj′ | h ∈ {1, . . . , n}}. On the one

hand, as bh > 0 for each h ∈ {1, . . . , n}, then bh ←P a+hj′ > 0 for each
h ∈ {1, . . . , n}. As a consequence, we obtain that x̂j′ > 0, and thus
nP (x̂j′) = 0. On the other hand, by definition of x̂j′ , we can ensure
that, in particular, x̂j′ ≤ bi ←P a+ij′ . Therefore, applying the adjoint

property, the next inequality a+ij′ ∗ x̂j′ ≤ bi holds. As a result, the
following inequality is verified:

(a+ij′ ∗ x̂j′) ∨ (a−ij′ ∗ nP (x̂j′)) = (a+ij′ ∗ x̂j′) ≤ bi

Therefore,
m∨
j=1

(a+ij ∗ x̂j) ∨ (a−ij ∗ nP (x̂j)) = bi

By an analogous reasoning for each i ∈ {1, . . . , n}, we can conclude that
(x̂1, . . . , x̂m) is a solution of System (9).

In order to prove the counterpart, suppose that System (9) is solvable,
and let build two sets J+, J− ⊆ {1, . . . ,m} with J+ ∩ J− = ∅ such that,
for each i ∈ {1, . . . , n}, either Statement (1) or Statement (2) is verified.

Given a solution (x̂1, . . . , x̂m) of System (9) and two index sets J+, J−

defined as follows:

J+ = {j ∈ {1, . . . ,m} | x̂j > 0}
J− = {j ∈ {1, . . . ,m} | x̂j = 0}

Clearly, J+ ∩ J− = ∅. Given i ∈ {1, . . . , n}, as (x̂1, . . . , x̂m) is a solution of
System (9), one of the following statements is verified:

(a) there exists j ∈ {1, . . . ,m} such that a+ij ∗ x̂j = bi.
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(b) there exists j ∈ {1, . . . ,m} such that a−ij ∗ nP (x̂j) = bi.

On the one hand, if Statement (a) holds, as bi > 0, we deduce that
x̂j > 0, and thus j ∈ J+. Moreover, since operator ∗ is monotonic and
a+ij ∗ 1 = a+ij, the equality a+ij ∗ x̂j = bi implies that a+ij ≥ bi. In fact, by
a similar reasoning to the one given in Theorem 9, it can be proved that
x̂j = bi ←P a+ij.

Finally, suppose that there exists h ∈ {1, . . . , n} such that bi ←P a+ij >
bh ←P a+hj, this is, x̂j > bh ←P a+hj. From the adjoint property, we obtain

that x̂j ≤ bh ←P a+hj if and only if a+hj ∗ x̂j ≤ bh, Therefore, we can ensure

that a+hj ∗ x̂j > bh. This fact leads us to a contradiction, since (x̂1, . . . , x̂m)
would not be a solution of equation h in System (9) and so, it would not be
a solution of the mentioned system.

Hence, we can ensure that, if Statement (a) holds, then there exists j ∈
J+ such that a+ij ≥ bi and bi ←P a+ij ≤ bh ←P a+hj, for each h ∈ {1, . . . , n}.
That is, Statement (1) holds.

On the other hand, suppose that Statement (b) is verified. Since bi > 0,
the equality a−ij∗nP (x̂j) = bi implies that nP (x̂j) > 0, and thus x̂j = 0. That
is, j ∈ J−. Consequently, we obtain that nP (x̂j) = 1, and straightforwardly
a−ij = bi.

To end, suppose that there exists h ∈ {1, . . . , n} such that a−hj > bh.
As a result, we obtain that (x̂1, . . . , x̂m) is not a solution of equation h in
System (9) and thus it is not a solution of that system. That is, we obtain
a contradiction.

Therefore, if Statement (b) holds, then there exists j ∈ J− such that
a−ij = bi and a−hj ≤ bh for each h ∈ {1, . . . , n}. In other words, Statement
(2) holds. �

The following example clarifies the previous result.

Example 21. Given the following bipolar max-product FRE system with
three equations and three unknown variables

(1 ∗ x1) ∨ (0.7 ∗ nP (x1)) ∨ (0.2 ∗ x2) ∨ (0.4 ∗ nP (x2)) ∨ (0.5 ∗ x3) ∨ (0.7 ∗ nP (x3)) = 0.7

(0.8 ∗ x1) ∨ (0.1 ∗ nP (x1)) ∨ (0.8 ∗ x2) ∨ (0.2 ∗ nP (x2)) ∨ (0.3 ∗ x3) ∨ (0.6 ∗ nP (x3)) = 0.6

(0.4 ∗ x1) ∨ (0.2 ∗ nP (x1)) ∨ (0.3 ∗ x2) ∨ (0.3 ∗ nP (x2)) ∨ (0.6 ∗ x3) ∨ (0.2 ∗ nP (x3)) = 0.3

We will consider the index sets J+ = {2, 3} and J− = {1}. We will
see that for each i ∈ {1, 2, 3} the conditions required in the hypothesis of
Theorem 20 are verified. First of all, notice that J+ ∩ J− = ∅.
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• Case i = 1 (first equation of the system): there exists j = 1 belonging
to J− satisfying that a−11 = b1 = 0.7, a−21 = 0.1 ≤ 0.6 = b2 and
a−31 = 0.2 ≤ 0.3 = b3.

• Case i = 2 (second equation of the system): we obtain that the index
j = 2 ∈ J+ verifies that 0.8 = a+22 ≥ b2 = 0.6. In addition, the
inequalities b2 ←P a+22 ≤ b3 ←P a+32 and b2 ←P a+22 ≤ b1 ←P a+12 hold,
as we see below:

0.6←P 0.8 = 0.75 ≤ 1 = 0.7←P 0.2

0.6←P 0.8 = 0.75 ≤ 1 = 0.3←P 0.3

• Case i = 3 (third equation of the system): we find the index j = 3
belonging to J+ satisfying that 0.6 = a+33 ≥ b3 = 0.3. Furthermore,
the next inequalities are obtained:

b3 ←P a+33 = 0.3←P 0.6 = 0.5 ≤ 1 = 0.7←P 0.5 = b1 ←P a+13

b3 ←P a+33 = 0.3←P 0.6 = 0.5 ≤ 1 = 0.6←P 0.3 = b2 ←P a+23

Consequently, Theorem 20 can be applied which leads us to obtain that
the given system is solvable. Indeed, from the computations above, one can
easily check that the tuple (0, 0.75, 0.5) is a solution of such system.

Observe that, the tuple (0, 0.75, 0.5) is not the unique solution of the
system. We can find some other different definitions of the index sets J+

and J− such that, for each i ∈ {1, 2, 3} the hypothesis of Theorem 20
are satisfied. For instance, considering the index sets J+ = ∅ and J− =
{1, 2, 3}, it is easy to deduce that the system is solvable and the tuple
(0, 0, 0) is a solution of the given system.

It is also important to mention that, the set J+ does not need to be the
complementary set of J−. That is, the equality J+ ∪ J− = {1, 2, 3} is not
required in order to guarantee the solvability of the system. For example,
the index sets J+ = {1} and J− = {3} verify the hypothesis of Theorem 20
and clearly J+ ∪ J− = {1, 3} 6= {1, 2, 3}. From the sets J+ = {1} and
J− = {3}, we obtain the solution (0.75, 0, 0). �

We have provided sufficient and necessary conditions which allow us to
know when an arbitrary bipolar max-product FRE system with the residu-
ated negation of the product t-norm is solvable. In the future, we will study
the resolution of bipolar max-product FRE systems in which independent
terms can take the value zero.
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4. Conclusions and future work

A broad study on the resolution of bipolar max-product FREs has been
carried out, considering the non-involutive negation operators defined from
the implication associated with the product t-norm. Three different parts
can be distinguished in our research according to the complexity of the
considered bipolar equations. The first part introduces a characterization
on the resolution of bipolar max-product FREs with only one unknown
variable. The second part shows under what conditions a bipolar max-
product fuzzy relation equation containing different variables is solvable.
Moreover, interesting properties related to the algebraic structure of the
set of solutions have been included. The third part considers bipolar max-
product FRE systems and presents the requirements to guarantee when
these systems are solvable. Notice that, the residuated negations related to
the Gödel implication and the product implication coincide, and therefore,
we can ensure that the solvability for bipolar max-product FREs with the
Gödel negation has also been analyzed in this paper.

As future work, based on Theorem 20, we will study the introduction of
an efficient algorithm, determining whether a system of bipolar max-product
fuzzy relation equations is solvable and computing at least one solution. It
will be also fundamental to investigate more properties in order to know
the algebraic structure of the complete set of solutions corresponding to an
arbitrary solvable system of bipolar max-product fuzzy relation equations.
Moreover, we are interested in studying bipolar fuzzy relation equations
based on other general operators, such as uninorms, u-norms, adjoint triples,
etc.

References

[1] C. Alsina, E. Trillas, and L. Valverde. On some logical connectives for fuzzy sets
theory. Journal of Mathematical Analysis and Applications, 93:15–26, 1983.

[2] W. Bandler and L. Kohout. Semantics of implication operators and fuzzy relational
products. Int. J. Man-Machine Studies, 12:89–116, 1980.
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