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Abstract

In Rough Set Theory, the notion of bireduct allows to simultaneously
reduce the sets of objects and attributes contained in a dataset. In addi-
tion, value reducts are used to remove some unnecessary values of certain
attributes for a specific object. Therefore, the combination of both notions
provides a higher reduction of unnecessary data. This paper is focused on
the study of bireducts and value reducts of information and decision tables.
We present interesting results about particular cases of bireducts, relating
the notion of bireduct to reduct. We also analyze the relationship between
bireducts and value reducts.
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1. Introduction

Introduced by Pawlak in the 1980s, Rough Set Theory (RST) is a for-
mal tool whose purpose is modeling and processing incomplete information
contained in relational databases [21]. Due to the huge amount of data
collected in databases, it is increasingly common to find problems for the
management and treatment of the stored information [9, 11, 14, 15, 23].
This fact makes necessary to carry out a preprocessing of data in order to
remove redundant information [1, 2, 3, 6, 10].
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Two important notions related to reduction mechanisms of information
and decision tables in RST are reducts and bireducts. Reducts are used to
remove attributes of the database, keeping all the information contained in
the dataset [13, 16, 20, 26, 27]. Bireducts go further and pursue the simulta-
neous removal of both, objects and attributes, by avoiding incompatibilities,
redundancies and removing the existing noise [5, 7, 8, 17, 18, 24, 25].

On the other hand, Pawlak defined value reducts in RST in order to
keep reducing the size of relational databases. The idea of this notion is to
consider the indispensable attributes for each object instead of indispensable
attributes for all the objects. Hence, it is possible to disregard certain values
of attributes for each object, while the information of the original table is
preserved.

In this paper, we will study different properties associated with bireducts
and its relationship with reducts. For example, we will analyze bireducts
whose subset of objects contains all objects, bireducts whose subset of at-
tributes contains all attributes and bireducts whose subsets of objects or
attributes are the empty set. Moreover, we have shown that, given a subset
of attributes B of a bireduct, each object in the universe belongs at least
to an information bireduct associated with B. In addition, we will take
special attention to the comparison of bireducts and value reducts in order
to discover the existing relationships between these notions. This second
part will also be very interesting because, although originally both notions
were defined independently, we will show remarkable links between them.
In particular, we will prove that every value reduct B for an object x is the
subset of attributes of a bireduct (X,B) in which x belongs to the subset
of objects of the bireduct, x ∈ X. This study will be carried out with both,
information and decision tables. All the notions and results will appear
accompanied with examples to make easier their understanding.

The paper is organized as follows: preliminary notions of RST, together
with an example, are recalled in Section 2. Afterwards, Section 3 presents
the notion of bireduct together with different technical properties, as well as
its relationship with reducts. Section 4 introduces the relationship between
bireducts and value reducts through some results and examples. Finally,
conclusions and future works are presented in Section 5.

2. Rough set theory

This section presents the basic definitions of RST which will play a cru-
cial role in our study. First of all, it is convenient to recall that databases are
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represented as information tables in this framework. Formally, information
tables are defined below.

Definition 1. Let U and A be non-empty sets of objects and attributes,
respectively. An information table is a tuple (U,A,VA,A) such that
VA = {Va | a ∈ A}, where Va is the set of values associated with the
attribute a over U , and A = {ā : U → Va | a ∈ A}.

Next, an equivalence relation is defined on the set of objects of an infor-
mation table. This equivalence relation will be useful to compare objects
according to a given subset of attributes.

Definition 2. Let (U,A, VA,A) be an information table. The indiscerni-
bility mapping I : P(A) → P(U × U) is defined, for each B ⊆ A, as the
equivalence relation

I(B) = {(x, y) ∈ U × U | ā(x) = ā(y), for all a ∈ B}

which is called B-indiscernibility relation. Each class of I(B) can be written
as [x]I(B) = {y ∈ U | (x, y) ∈ I(B)}. The partition determined by I(B) on
the set of objects U is denoted as U/I(B) = {[x]I(B) | x ∈ U}.

Notice that in the particular case of B = ∅, we have that I(∅) =
U × U . Based on an indiscernibility relation, the notions of indiscernible
and discernible objects are introduced as follows.

Definition 3. Given an information table (U,A, VA,A) and a subset of
attributes B ⊆ A, we say that x, y ∈ U are B-indiscernible if y ∈ [x]I(B).
Otherwise, we say x, y are B-discernible.

Now, we define a fundamental notion in the analysis and extraction
of information from databases, that is, the notion of reduct. Reducts are
introduced to cover the need to reduce information tables, removing their
redundant and/or superfluous variables without losing information.

Definition 4. Given an information table (U,A, VA,A) and a subset of
attributes B ⊆ A, we say that:

• a ∈ B is dispensable in B if I(B) = I(B \ {a}). Otherwise, a is
indispensable in B.
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• B is independent if all its attributes are indispensable in B.

• B′ ⊆ B is a reduct of B if B′ is independent and I(B) = I(B′).

Notice that, a reduct of A is a subset of attributes that preserves the
partition and therefore, it classifies objects in the same way as if we consider
the whole set of attributes. Consequently, attributes not belonging to a
reduct are unnecessary.

The following notion allows to remove some values of certain attributes,
when it is not possible to delete such attributes without altering the infor-
mation contained in the considered database.

Definition 5. Let (U,A, VA,A) be an information table, B ⊆ A and x ∈
U . We say that:

• The value of an attribute a ∈ B is dispensable inB for x, if the equality
[x]I(B) = [x]I(B\{a}) holds. Otherwise, the value of a is indispensable
in B for x.

• B is independent for x, if the value of a is indispensable in B for x,
for each attribute a ∈ B.

• B′ ⊆ B is a value reduct of B for x, if B′ is independent for x and
[x]I(B) = [x]I(B′).

A helpful particular case of information table arises when an attribute
is highlighted, which is defined below.

Definition 6. Let U and A be non-empty sets of objects and attributes,
respectively. A decision table is a tuple (U,Ad,VAd

,Ad) such that Ad =
A ∪ {d} with d /∈ A, VAd

= {Va | a ∈ Ad}, where Va is the set of values
associated with attribute a over U , and Ad = {ā : U → Va | a ∈ Ad}. In
this case, the attributes of A are called condition attributes and d is called
decision attribute.

In what follows, the notions of dispensable, independent and reduct are
translated to the decision table framework. These concepts are based on
the well-known notion of positive region which is given below.
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Definition 7. Let (U,Ad,VAd
,Ad) be a decision table and B ⊆ A. The

positive region of the partition U/I({d}) with respect to B is defined as

POSB({d}) =
⋃

X∈U/I({d})

B∗(X)

where B∗(X) = {x ∈ U | [x]I(B) ⊆ X}.

Definition 8. Given a decision table (U,Ad,VAd
,Ad) and a subset of at-

tributes B ⊆ A, we say that:

• a ∈ B is d-dispensable in B, if POSB({d}) = POS(B\{a})({d}). Oth-
erwise, attribute a is d-indispensable in B.

• B is d-independent if all its attributes are d-indispensable in B.

• B′ ⊆ B is a d-reduct of B if B′ is d-independent and the equality
POSB({d}) = POSB′({d}) holds.

The dispensable nature of the values of the attributes included in a
decision table is studied by using the following definition.

Definition 9. Given a decision table (U,Ad,VAd
,Ad), a subset of attributes

B ⊆ A and x ∈ U , we say that:

• The value of an attribute a ∈ B is d-dispensable in B for x, if

[x]I(B) ⊆ [x]I({d}) and [x]I(B\{a}) ⊆ [x]I({d})

Otherwise, the value of attribute a is d-indispensable in B for x.

• B is d-independent for x, if the value of a is d-indispensable in B for
x, for each attribute a ∈ B.

• B′ ⊆ B is a d-value reduct of B for x, if B′ is d-independent for x and
the inclusion [x]I(B) ⊆ [x]I({d}) implies that [x]I(B′) ⊆ [x]I({d}).

This section finishes with an illustrative example in order to clarify the
definitions presented previously. Specifically, the following example was
introduced in [25] for determining the suitability of a particular day for
playing sport according to meteorological conditions.
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Day Outlook Temperature Humidity Wind

1 sunny hot high weak
2 sunny hot high strong
3 overcast hot high weak
4 rain mild high weak
5 rain cool normal weak
6 rain cool normal strong
7 overcast cool normal strong
8 sunny mild high weak
9 sunny cool normal weak
10 rain mild normal weak
11 sunny mild normal strong
12 overcast mild high strong
13 overcast hot normal weak
14 rain mild high strong

Table 1: Table associated with the information table (U,A,VA,A) given in Example 10.

Example 10. Consider an information table (U,A,VA,A) where the set
of objects U = {1, 2, . . . , 14} represents days of a certain month and the set
of attributes A = {Outlook(O), Temperature(T ), Humidity(H), Wind(W )}
indicates meteorological conditions. This information table is represented
in Table 1.

To begin with, we will see that A is actually the only reduct of the
information table. It is easy to verify that there are no objects with the
same values for the attributes ofA and therefore, [x]I(A) = {x} for all x ∈ U .
However, if we dispense with an attribute, for example we consider day 1
and the subset of attributes {O, T,H}, we obtain:

[1]I({O,T,H}) ={y ∈ U | 1, y are {O, T,H}-indiscernible}
={y ∈ U | O(y) = O(1) = sunny,

T (y) = T (1) = hot,

H(y) = H(1) = high}
={1, 2}

Since [1]I(A) = {1} ≠ {1, 2} = [1]I({O,T,H}), we can conclude that
6



I(A) ̸= I({O, T,H}). Hence, by Definition 4, attribute W is indispensable
in A. Following an analogous reasoning, we obtain [1]I({O,H,W}) = {1, 8}
and therefore, attribute T is also indispensable in A. In addition, O is in-
dispensable in A because [1]I({T,H,W}) = {1, 3}. Notice that, from object 1,
we cannot deduce that attribute H be indispensable since [1]I(A) = {1} =
[1]I({O,T,W}). However, from object 3, we have that [3]I(A) = {3} ≠ {3, 13} =
[3]I({O,T,W}). Then, by Definition 4, attribute H is indispensable in A.

Consequently, each attribute in A is indispensable for the information
processing and we can ensure that A is the only reduct of the information
table. Therefore, we need all the attributes to manage information presented
in Table 1. In other words, if we omit any attribute, we lose information
from the RST point of view.

Now, we will compute the value reducts corresponding to A by using
Definition 5. For that, we need to eliminate the values of attributes which
are dispensable in A for each object.

For instance, we calculate a value reduct of A for the object 1. We have
that the equality [1]I(A) = [1]I({O,T,W}) holds. In addition, [1]I({O,T,W}) ̸=
[1]I({O,T,W}\{a}) for all a ∈ {O, T,W}, since [1]I({O,T}) = {1, 2}, [1]I({O,W}) =
{1, 8, 9} and [1]I({T,W}) = {1, 3, 13}. By Definition 5, the value of the at-
tributes O, T,W is indispensable for the object 1 and {O, T,W} is indepen-
dent for the object 1. Then, {O, T,W} is a value reduct of A for 1. In fact,
it is the only value reduct of A for 1.

Following an analogous procedure with the rest of objects, we obtain
Table 2. The information collected in Table 2 indicates the value reducts
corresponding toA for the considered information table (U,A,VA,A). From
Table 2, we can conclude that O and T are the most important attributes
of the information table because its values are indispensable for the most
of objects.

Now, we will include a new column in Table 1 in order to obtain a
decision table (U,Ad,VAd

,Ad) whose decision attribute is {d} = {Play}.
The decision table is represented in Table 3 and it is studied below.

As it was shown previously, each pair of objects are A-discernible and
so, we deduce the equality POSA({d}) = U . Now, we will prove that
{O,H,W} is a d-reduct of A. First of all, we compute U/I({O,H,W}), ob-
taining [1]I(O,H,W ) = {1, 8}, [5]I(O,H,W ) = {5, 10} and the rest of equivalence
classes are the trivial classes. On the other hand, the set U/I({d}) is com-
posed of the classes [1]I({d}) = {1, 2, 6, 8, 14} and [3]I({d}) = {3, 4, 5, 7, 9, 10, 11, 12, 13},
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Day Outlook Temperature Humidity Wind

1 sunny hot - weak
2 - hot - strong
3 overcast hot high -
4 rain - high weak
5 rain cool - weak
6 rain cool - strong
7 overcast cool - -
8 sunny mild high -
9 sunny cool - -
10 rain mild normal -
11 sunny mild normal -
12 overcast mild - -
13 - hot normal -
14 rain mild - strong

Table 2: Value reducts corresponding to A of the information table (U,A,VA,A) given
in Example 10.

that is,
U/I({d}) = {[1]I({d}) , [3]I({d})}

As a consequence, we obtain

POS{O,H,W}({d}) = {x ∈ U | [x]I({O,H,W}) ⊆ [x]I({d})} = U

POS{O,H}({d}) = [1]I({O,H}) ∪ [3]I({O,H}) ∪ [7]I({O,H}) ∪ [9]I({O,H})

= {1, 2, 3, 7, 8, 9, 11, 12, 13}
POS{O,W}({d}) = [3]I({O,W}) ∪ [4]I({O,W}) ∪ [6]I({O,W}) ∪ [7]I({O,W})

= {3, 4, 5, 6, 7, 10, 12, 13, 14}
POS{H,W}({d}) = [5]I({H,W})

= {5, 9, 10, 13}

By Definition 8, each attribute in {O,H,W} is d-indispensable and
{O,H,W} is d-independent. Consequently, {O,H,W} is a d-reduct of A.
This fact implies that we can eliminate all values of Temperature for each
object without losing information. Hence, we can decide if a day is suitable
to play only by using Outlook, Humidity and Wind.
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Day Outlook Temperature Humidity Wind Play

1 sunny hot high weak no
2 sunny hot high strong no
3 overcast hot high weak yes
4 rain mild high weak yes
5 rain cool normal weak yes
6 rain cool normal strong no
7 overcast cool normal strong yes
8 sunny mild high weak no
9 sunny cool normal weak yes
10 rain mild normal weak yes
11 sunny mild normal strong yes
12 overcast mild high strong yes
13 overcast hot normal weak yes
14 rain mild high strong no

Table 3: Table associated with the decision table (U,Ad,VAd
,Ad) given in Example 10.

Next step is studying d-value reducts of {O,H,W}, since it is a d-
reduct of A, for all x ∈ U by using Definition 9, which clearly also are
d-value reducts of A. For instance, we will show {O,H} is a d-value reduct
of {O,H,W} for the object 1. According to the information collected in
Table 3, we obtain:

• [1]I({O,H,W}) = {1, 8} ⊆ [1]I({d}) = {1, 2, 6, 8, 14}.

• [1]I({O,H}) = {1, 2, 8} ⊆ [1]I({d}).

• [1]I({O}) = {1, 2, 8, 9, 11} ̸⊆ [1]I({d}).

• [1]I({H}) = {1, 2, 3, 4, 8, 12, 14} ̸⊆ [1]I({d}).

Applying Definition 9, we have that the value of attributes O,H is d-
indispensable and {O,H} is d-independent. Therefore, {O,H} is a d-value
reduct of {O,H,W} for the object 1. Hence, we can decide if a day is
suitable to play by means of the values of Outlook and Humidity for the ob-
ject 1. Following an analogous procedure with the rest of objects, we obtain
Table 4, which indicates some d-value reducts corresponding to {O,H,W}

9



for the considered decision table (U,Ad,VAd
,Ad). In addition, it is conve-

nient to emphasize that there may exist more than one d-value reduct for
an object. For instance, as Table 4 shows, {O,H} is a d-value reduct of
{O,H,W} for the object 9 and, it is easy to see that {H,W} is a d-value
reduct of {O,H,W} for this object too. □

Day Outlook Temperature Humidity Wind Play

1 sunny - high - no
2 sunny - high - no
3 overcast - - - yes
4 rain - - weak yes
5 rain - - weak yes
6 rain - - strong no
7 overcast - - - yes
8 sunny - high - no
9 sunny - normal - yes
10 rain - - weak yes
11 sunny - normal - yes
12 overcast - - - yes
13 overcast - - - yes
14 rain - - strong no

Table 4: d-value reducts corresponding to {O,H,W} of the decision table
(U,Ad,VAd

,Ad) given in Example 10.

Therefore, value reducts offer a different point of view of the relation-
ships among the attributes, which is very useful to obtain an extra level of
reduction and only consider the strictly necessary attributes and values in
the computation, such as in the determination of decision rules.

3. Bireducts. Properties and the relationship with reducts

Bireducts arise as an extension of the classical notions of reducts in RST
providing an extra flexibility for operating with subsets of attributes and
subsets of objects from which those attributes can be portrayed efficiently [5,
17, 18, 24, 25]. Specifically, bireducts are used to reduce the number of
attributes by avoiding the occurrence of incompatibilities and removing the
existing noise in tabular databases.
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This section introduces diverse properties of the different notions of
bireduct: information bireduct, decision bireduct and U -decision bireduct,
and the relationship with reducts, which will be illustrated with exam-
ples. These results complement the ones given in the initial study presented
in [25].

3.1. Information bireducts

Information bireducts generalize information reducts by operating with
subsets of attributes and subsets of objects [5, 18, 25]. Specifically, infor-
mation bireducts allow to distinguish objects by the subset of considered
attributes, so they are good subrepresentations of the information table. In
this section, an information table (U,A,VA,A) will be fixed. The notion of
information bireduct is formally defined as follows.

Definition 11. Given X ⊆ U and B ⊆ A, we say that:

• B is X-irreducible if there is no B′ ⊂ B such that all pairs x, y ∈ X
are B′-discernible.

• X is B-inextensible if there is no X ′ ⊂ U with X ⊂ X ′ such that all
pairs x, y ∈ X ′ are B-discernible.

• The pair (X,B) is an information bireduct if all pairs x, y ∈ X are
B-discernible, B is X-irreducible and X is B-inextensible.

Notice that, information bireducts generate information subtables with
only different rows (all objects are B-discernible). The following technical
property guarantees that, given B ⊆ A, if there exist information bireducts
in the information table with B as subset of attributes, then each object of
the universe belongs to some information bireduct.

Proposition 12. Given a subset of attributes B ⊆ A and the subsets of
objects X1, . . . , Xn ⊆ U such that the pairs (X1, B), . . . , (Xn, B) are all the

information bireducts, then U =
n⋃

i=1

Xi.

Proof. It is clear that
n⋃

i=1

Xi ⊆ U . We will prove the other inclusion by

reductio ad absurdum. Given y ∈ U , we will suppose that y /∈
n⋃

i=1

Xi.

Therefore, y /∈ Xi for all i ∈ {1, . . . , n}. Consequently, without loss of
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generality, we can suppose that there exists x1 ∈ X1 such that x1, y are B-
indiscernible. Hence, (X1 \ {x1} ∪ {y}, B) is an information bireduct which
leads us to a contradiction, since by hypothesis (X1, B), . . . , (Xn, B) are all
information bireducts withB as subset of attributes andXi ̸= X1\{x1}∪{y}
for all i ∈ {1, . . . , n} because y /∈

n⋃
i=1

Xi. As a consequence, U ⊆
n⋃

i=1

Xi. In

conclusion, U =
n⋃

i=1

Xi. □

The notion of information bireduct as well as the last property will be
applied to a particular case next.

Example 13. Consider the information table given in Example 10 and the
subset of attributes B = {O, T,W} ⊆ A in order to compute all information
bireducts. First of all, we will calculate what objects are B-indiscernible.
Taking into account the information collected in Table 1 and applying Def-
inition 2, we obtain:

U/I(B) = {[1]I(B) , [2]I(B) , [3]I(B) , [4]I(B) , [5]I(B) ,

[6]I(B) , [7]I(B) , [8]I(B) , [9]I(B) , [11]I(B) ,

[12]I(B) , [14]I(B)}

where [3]I(B)={3, 13}, [4]I(B)={4, 10} and the other classes are the trivial
classes.

Therefore, according to Definition 3, the pairs of objects 3, 13 and 4, 10
are B-indiscernible and the other pairs of objects are B-discernible. Notice
that, removing from U an object of each pair 3, 13 and 4, 10, we obtain the
following sets U \ {10, 13}, U \ {3, 10}, U \ {4, 13} and U \ {3, 4}, which
are all B-inextensible subsets of objects by construction. Consequently, by
Definition 11, the candidates to information bireducts are the pairs (U \
{10, 13}, B), (U \ {3, 10}, B), (U \ {4, 13}, B) and (U \ {3, 4}, B).

On the other hand, B must be X-irreducible, with X ∈ {U \{10, 13}, U \
{3, 10}, U \{4, 13}, U \{3, 4}}, in order to satisfy the conditions required in
the notion of information bireduct. It can be seen immediately that the ob-
jects 1, 2 are {O, T}-indiscernible, the objects 1, 8 are {O,W}-indiscernible
and the objects 5, 9 are {T,W}-indiscernible. Hence, for every of the four
possibilities for X, there is no B′ ⊂ A with B′ ⊂ B such that all pairs
x, y ∈ X are B′-discernible, that is, B is X-irreducible. Therefore, we
can ensure that (U \ {10, 13}, B), (U \ {3, 10}, B), (U \ {4, 13}, B) and
(U \ {3, 4}, B) are all the information bireducts.
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Finally, according to Proposition 12, it is straightforwardly obtained
that each object belongs to some information bireduct, that is:

U = U \ {10, 13}
⋃

U \ {3, 10}
⋃

U \ {4, 13}
⋃

U \ {3, 4}

□

Therefore, the set of information bireducts with a fixed subset of at-
tributes B allows the division of information tables into subtables, which
are non-redundant and each object is represented in at least one of these
subtables, so no information is lost. In this way, it is possible to rebuild
the original table by using the generated subtables. Moreover, an impor-
tant particular case is when the subset of attributes B is a reduct of A. In
this case, each information subtable contains the same information that the
original table, providing a great representation of the database.

Next, two particular cases of information bireducts are introduced. The
first one was already proved in [4] and it relates the notion of reduct to the
notion of information bireduct.

Proposition 14 ([4]). Given B ⊆ A, if the pair (U,B) is an information
bireduct, then B is a reduct of A.

Since (U,B) is an information bireduct, we can conclude that B dis-
tinguishes all the objects of U and for each subset B′ ⊆ B there exists
xB′ , yB′ ∈ U such that they are B′-indiscernible. As a consequence, B is a
reduct of A. However, if B is a reduct, there may have objects that B is
not able to distinguish because A do not distinguish them. Therefore, the
reciprocal of the last property is not true in general, as it is illustrated in
the following example.

Example 15. Let (U,A,VA,A) be the information table represented in
Table 5, where the set of objects U = {1, 2, 3, 4} represents patients, the set
of attributes is given by A = {Height (h),Age (a),Gender (g)}.

From Table 5 it is easy to see that the equality I({h, g}) = I(A) holds,
since U/I(A) = U/I({h, g}) = {[1]I(A) , [3]I(A) , [4]I(A)} where [1]I(A) =
{1, 2} and the other classes are the trivial classes. Notice that [1]I({h}) =
{1, 2, 3} ̸= [1]I({h,g}) and [1]I({g}) = {1, 2, 4} ̸= [1]I({h,g}), then attributes
h and g are indispensable. Therefore, by using Definition 4, we conclude
that {h, g} is a reduct of A. Now, we will show that (U, {h, g}) is not
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Person Height Age Gender

1 medium young woman
2 medium young woman
3 medium young man
4 short old woman

Table 5: Table associated with (U,A,VA,A) given in Example 15.

an information bireduct, that is, the counterpart of Proposition 14 is not
satisfied.

The pair of objects 1, 2 are {h, g}-indiscernible whereas the other pairs
of objects are {h, g}-discernible. As a consequence, all information bireducts
with {h, g} as subset of attributes are ({1, 3, 4}, {h, g}) and ({2, 3, 4}, {h, g}).
Therefore, (U, {h, g}) is not an information bireduct. □

As it is showed in the previous example, reducts play an important role
in the calculus of information bireducts. Now, we present the result that
summarizes this property.

Proposition 16. Given B ⊆ A, if B is a reduct of A then there exists
X ⊆ U such that (X,B) is an information bireduct.

Proof. Suppose that B is a reduct of A. Consider a subset of objects
X ⊆ U such that each pair of objects x, y ∈ X are B-discernible and X
is B-inextensible. On the other hand, since B is a reduct of A, for each
B′ ⊂ B there exist xB′ , yB′ ∈ X B-discernible and B′-indiscernible. As a
consequence, B is X-irreducible and (X,B) is an information bireduct. □

Thanks to this result, it is possible to relate the notion of information
bireduct to the notion of reduct. Therefore, if a reduct B of an information
table is known, a non-redundant subtable can be built by using this subset
of attributes and which contains the same information as the original table.

In the next result, we study information bireducts whose subset of at-
tributes is the total set A, obtaining a double equivalence between informa-
tion bireducts and reducts of A.

Corollary 17. There exists X ⊆ U such that (X,A) is an information
bireduct if and only if A is a reduct of A.
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Proof. Suppose that (X,A) is an information bireduct. Hence, each pair
x, y ∈ X are A-discernible. We will prove that A is a reduct of A by
reductio ad absurdum. Suppose that there exists B ⊂ A being B a reduct
of A. Then, I(B) = I(A). Therefore, each pair x, y ∈ X are B-discernible,
obtaining a contradiction because A is X-irreducible.

The counterpart is obtained from Proposition 16. □

From Corollary 17, we can conclude that the reciprocal of Proposition 16
is only satisfied when B = A.

Next result studies information bireducts whose subset of attributes is
the empty set, that is, there are no attribute to distinguish the elements in
the subset of objects.

Proposition 18. Let (X,B) be an information bireduct, with X ⊆ U and
B ⊆ A. Then B = ∅ if and only if X = {x} for all x ∈ U .

Proof. Suppose B = ∅ and there exist x, y ∈ X such that x ̸= y. By
hypothesis (X,∅) is an information bireduct, then we obtain that x, y are
∅-discernible. This fact lead us to a contradiction, since each pair of objects
in U are ∅-indiscernible. Consequently, X = {x} for all x ∈ U .

Now, we prove the counterpart supposing that X = {x} for all x ∈ U .
By hypothesis (X,B) is an information bireduct, then X is B-inextensible
and we obtain that x, y are B-indiscernible for all y ∈ U . Therefore, for
every B′ ⊆ B, we have that x, y are B′-indiscernible for all y ∈ U . Since B
is X-irreducible, it implies that B = ∅. □

Consequently, when there exists a subset of attributes B ⊆ A that
cannot discern any pair of objects, we cannot find any information bireducts
with any subset B′ ⊆ B as subset of attributes, with the exception of the
empty set. If the subset of attributes considered is the empty set, which
cannot discern objects, then each object must be taken individually.

The study of particular cases of information bireducts is concluded re-
marking that there are no information bireducts whose subset of objects
is the empty set. This occurs because we can always consider at least one
object, as it is shown in Proposition 18.

This section finishes highlighting a feature of Definition 11 which could
be strange in some practical examples. Notice that, if there exist x, y ∈ U
such that [x]I(A) = [y]I(A) then x, y are B-indiscernible, for all B ⊆ A, as
a consequence x, y cannot belong to the same information bireduct (X,B).
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However, the choice of B has not caused x, y to be B-indiscernible due
to they are A-indiscernible. Since this fact is independent of B, it has
no sense considering these objects to compute the information bireducts.
This fact would lead us to obtain two information bireducts whose only
difference is that one of them contains the object x and the other one the
object y, being in essence exactly the same information provided by both
bireducts. In order to avoid this redundancy, another type of bireducts
defined in information tables could be considered taking into account this
fact. For that, next definition proposes to include all A-indiscernible objects
in equivalence classes so they can belong to a same information bireduct.

Definition 19. Let (U,A,VA,A) be an information table. An information
table reduced by classes is a tuple (U∗,As,VAs ,As) such that U∗ = {[x]I(A) |
x ∈ U}, As = A ∪ {s} with s /∈ A, VAs = {Va | a ∈ As} being Va the set
of values associated with the attribute a over U∗, and As is the set which
collects the mappings associated with each a ∈ A defined as

a∗ : U∗ −→ Va

[x]I(A) 7−→ ā(x)

and the mapping associated with the attribute s defined as

s̄ : U∗ −→ Vs

[x]I(A) 7−→ card([x]I(A))

Notice that the attribute s provides the number of objectsA-indiscernible
with x and Vs ⊂ N.

Following the same philosophy that the last two results, we present the
following properties of information tables reduced by classes.

Proposition 20. Let (U∗,As,VAs ,As) be an information table reduced by
classes and B ⊆ A. The pair (U∗, B) is an information bireduct if and only
if B is a reduct of A.

Proof. Suppose that B is a reduct of A. Given x∗, y∗ ∈ U∗, by the defini-
tion of U∗, we have that x∗, y∗ areA-discernible. Since I(A) = I(B) because
B is a reduct, then we deduce that x∗, y∗ are B-discernible. Therefore, the
pair (U∗, B) is an information bireduct.

The counterpart is obtained from Proposition 14 taking into account
that the elements of U∗ are the classes [x]I(A), for all x ∈ U . □
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The last property shows that the information tables considered in [4] are
actually information tables reduced by classes.

Proposition 21. Let (U∗,As,VAs ,As) be an information table reduced by
classes and (X,B) be an information bireduct, with X ⊆ U∗, B ⊆ A. Then
B = ∅ if and only if X = [x]I(A) for all x ∈ U .

Proof. The proof is obtained directly by Proposition 18, taking into ac-
count that the elements of U∗ are the classes [x]I(A), for all x ∈ U . □

The previous properties and examples highlight the need of studying
information bireducts for a useful management of information in data anal-
ysis. Now, we carry out the study of decision bireducts following a similar
structure to this section.

3.2. Decision bireducts

Decision bireducts are useful to analyze if a group of different subsets of
attributes classifies suitably a subset of objects in an easier way [5, 24, 25].
Now, a decision table (U,Ad,VAd

,Ad) will be fixed. The formal notion of
decision bireduct together with an illustrative example are given below.

Definition 22. Given X ⊆ U and B ⊆ A, we say that the pair (X,B)
is a decision bireduct if every pair x, y ∈ X is B-discernible when they are
d-discernible, B is X-irreducible and X is B-inextensible with respect to
this property.

It is important to emphasize that decision bireducts generate decision
subtables where there are no contradictions. Therefore, this notion is very
useful for decision-making. Next, we illustrate this notion in the following
example.

Example 23. Consider the decision table given in Example 10 and the
subset of attributes B = {O, T,H} ⊆ A in order to compute all decision
bireducts with subset of attributes B. Taking into account the information
contained in Table 3 and applying Definition 2, we obtain:

U/I(B) = {[1]I(B) , [3]I(B) , [4]I(B) , [5]I(B) , [7]I(B) , [8]I(B) ,

[9]I(B) , [10]I(B) , [11]I(B) , [12]I(B) , [13]I(B)}
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where [1]I(B) = {1, 2}, [4]I(B) = {4, 14}, [5]I(B) = {5, 6} and the other classes
are the trivial classes. Recall that

U/I({d}) = {[1]I({d}) , [3]I({d})}

where [1]I({d}) = {1, 2, 6, 8, 14}, [3]I({d}) = {3, 4, 5, 7, 9, 10, 11, 12, 13}. There-
fore, is is easy to see that the pairs of objects 4, 14 and 5, 6 are the only
d-discernible and B-indiscernible objects simultaneously. Hence, these pairs
of objects cannot appear in the same decision bireduct.

If we withdraw an object of each pair 4, 14 and 5, 6 from U , we obtain
the sets U \ {6, 14}, U \ {5, 14}, U \ {4, 6} and U \ {4, 5} which are B-
inextensible by construction. Moreover, all objects included in these sets
are B-discernible when they are d-discernible. As a result, by Definition 22,
the candidates to decision bireducts are (U \ {6, 14}, B), (U \ {5, 14}, B),
(U \ {4, 6}, B) and (U \ {4, 5}, B). In order to guarantee that they are
actually decision bireducts, we need to see that B is X-irreducible, being
X ∈ {U \ {6, 14}, U \ {5, 14}, U \ {4, 6}, U \ {4, 5}}.

From Table 3 and the classes of the quotient sets U/I({d}) and U/I(B),
we can ensure that:

• The pairs of objects 8, 11 and 10, 14 are B-discernible, d-discernible
and {O, T}-indiscernible.

• The pairs of objects 1, 3; 2, 3; 4, 8; 8, 12; 6, 7; 6, 9 and 12, 14 are B-
discernible, d-discernible and {T,H}-indiscernible.

• The pair of objects 6, 10 are B-discernible, d-discernible and {O,H}-
indiscernible.

With respect to the two first items, we have that at least one pair appears
in all candidates to decision bireduct. Therefore, attributes H and O cannot
be removed from any candidate. In addition, the pair of objects 6, 10 only
appear in candidates (U \ {5, 14}, B) and (U \ {4, 5}, B), so that it is not
possible to eliminate the attribute T in (U \ {5, 14}, B) and (U \ {4, 5}, B).

Consequently, B is X-irreducible only for the pairs (U \ {5, 14}, B)
and (U \ {4, 5}, B) and then, they are the only decision bireducts whose
subset of attributes is B. We also have that (U \ {6, 14}, {O,H}), and
(U \ {4, 6}, {O,H}) are decision bireducts. □

It is important to mention that Proposition 12 is not satisfied by decision
bireducts. In fact, the previous example is a counterexample. Specifically,
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we have that object 5 does not belong to any decision bireduct with B as
subset of attributes.

On the other hand, next result makes easier the computation of decision
bireducts thanks to the notion of positive region.

Proposition 24. Given X ⊆ U and B ⊆ A, if the pair (X,B) is a decision
bireduct then POSB({d}) ⊆ X.

Proof. Let (X,B) be a decision bireduct. We will prove that POSB({d}) ⊆
X by reductio ad absurdum. Let x ∈ POSB({d}) such that x /∈ X. As
(X,B) is a decision bireduct, the subset X is B-inextensible. Then, there
exists y ∈ X such that x, y are d-discernible and B-indiscernible. As a
consequence, [x]I(B) ̸⊆ [x]I({d}). Therefore, x /∈ POSB({d}), obtaining a
contradiction. □

This result allows to simplify the procedure to obtain decision bireducts,
since the positive region is very useful to the construction of the subset of
objects X. On the other hand, it is important to emphasize that the in-
clusion is usually strict, that is POSB({d}) ̸= X. For instance, in Exam-
ple 23, (U \ {5, 14}, B) and (U \ {4, 5}, B) are all decision bireducts with
B = {O, T,H} as subset of attributes. In addition, from the computation
of U/I({d}) and U/I(B) it is easy to see that POSB({d}) = U \{4, 5, 6, 14}.
Therefore, in both cases, POSB({d}) ̸= X.

Following the same scheme of the previous section, we introduce a result
which relates the definitions of decision bireduct and d-reduct.

Proposition 25. Let B ⊆ A be a subset of attributes. If the pair (U,B) is
a decision bireduct then POSB({d}) = U . Moreover, B is a d-reduct of A.

Proof. First of all, we will prove that POSB({d}) = U . Clearly, POSB({d}) ⊆
U . Now, given x ∈ U and y ∈ [x]I(B) ⊆ U , we have that x, y are B-
indiscernible. Since (U,B) is a decision bireduct, then x, y are also d-
indiscernible. Therefore, y ∈ [x]I({d}). Consequently, [x]I(B) ⊆ [x]I({d})
which implies that x ∈ POSB({d}). Hence, the equality POSB({d}) = U
holds.

Furthermore, we must prove that B is a d-reduct ofA. First of all, notice
that POSA({d}) = U since POSB({d}) ⊆ POSA({d}). Now, we will prove
the irreducibility condition by reductio ad absurdum. We suppose that there
exists B′ ⊂ B such that POSB′({d}) = POSB({d}) = U . Since (U,B) is a
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decision bireduct, we obtain that for each B′ ⊂ B there exist xB′ , yB′ ∈ U
such that they are d-discernible, B-discernible and B′-indiscernible. As a
consequence, xB′ , yB′ ∈ POSB({d}) but xB′ , yB′ /∈ POSB′({d}). Hence,
POSB({d}) ̸= POSB′({d}), obtaining a contradiction. As a result, B is
d-independent and therefore B is a d-reduct of A. □

The following example shows that B be a d-reduct of A is not enough
to ensure that (U,B) is a decision bireduct.

Example 26. We consider the information table of Example 15 and we
add a decision attribute {d} = {Test (t)} which represents a medical test.
This decision table is represented in Table 6.

Height Age Gender Test

1 medium young woman +
2 medium young woman -
3 medium young man +
4 short old woman -

Table 6: Table associated with the decision table (U,Ad,VAd
,Ad) given in Example 26.

Consider the subset of attributes B = {h, g}. It is easy to see that

U/I({d}) = {[1]I({d}) , [2]I({d})}
U/I(B) = {[1]I(B) , [3]I(B) , [4]I(B)}

where [1]I({d}) = {1, 3}, [2]I({d}) = {2, 4}, [1]I(B) = {1, 2} and the other
classes are the trivial classes. In addition, in Example 15, we showed that
U/I(A) = U/I(B). Hence, it is obtained that POSA({d}) = POSB({d}) =
{3, 4}. On the other hand, it is easy to see that POS{h}({d}) = {4} and
POS{g}({d}) = {3}, so both attributes are d-indispensable in B, and there-
fore, B is a d-reduct of A. However, since POSB({d}) = {3, 4} ̸= U , by
Proposition 25, we obtain that (U,B) is not a decision bireduct. Indeed, in
this case, there is no subset of objects X ⊆ U such that (X,B) is a decision
bireduct, as we show next.

We have that the pair of objects 1, 2 areB-indiscernible and d-discernible,
whereas the other pairs of objects are B-discernible if they are d-discernible.
As a consequence, the only candidates to decision bireduct with B as sub-
set of attributes are ({1, 3, 4}, B) and ({2, 3, 4}, B). However, it is easy
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to see that B is not X-irreducible with X ∈ {{1, 3, 4}, {2, 3, 4}} because
({1, 3, 4}, {h}) and ({2, 3, 4}, {g}) are decision bireducts. Therefore, since
B is a d-reduct of A and does not exist X ⊆ U such that (X,B) is a decision
bireduct, we have that Proposition 16 is not true for decision tables.

In addition, we will show that Corollary 17 is not true in decision tables.
With this purpose, we add two objects to the original table. This decision
table is represented in Table 7.

Height Age Gender Test

1 medium young woman +
2 medium young woman -
3 medium young man +
4 short old woman -
5 medium old woman +
6 medium old woman -

Table 7: Table associated with the decision table (U,Ad,VAd
,Ad) given in Example 26

modified.

We will show that ({2, 3, 4, 5},A) is a decision bireduct. From Table 7,
it is easy to see that all elements in {2, 3, 4, 5} are A-discernible if they are
d-discernible. In addition, {2, 3, 4, 5} is A-inextensible because the pairs of
objects 1, 2 and 5, 6 are d-discernible and A-indiscernible.

Now, we will prove that A is {2, 3, 4, 5}-irreducible. On the one hand,
the pair of objects 2, 3 are {h, a}-indiscernible and d-discernible, so that the
attribute g is necessary to distinguish these objects. On the other hand,
objects 4, 5 are {a, g}-indiscernible and d-discernible, so that the attribute
h is also necessary. Finally, the objects 2, 5 are {h, g}-indiscernible and
d-discernible, so the attribute a is also necessary. As a consequence, A is
{2, 3, 4, 5}-irreducible and therefore ({2, 3, 4, 5},A) is a decision bireduct.

To conclude, we will show that A is not a d-reduct of A. As we have
mentioned, the pairs of objects 1, 2 and 5, 6 are the only pairs of objects
d-discernible and A-indiscernible. Therefore, POSA({d}) = {3, 4}. On the
other hand, as [3]I({h,g}) = {3} and [4]I({h,g}) = {4} and POS{h,g}({d}) ⊆
POSA({d}) it is obtained that POS{h,g}({d}) = POSA({d}) = {3, 4}. Fi-
nally, we obtain that 3 /∈ POS{h}({d}) due to [3]I({h}) = U \ {4}. As a
consequence, the attribute g is indispensable in {h, g}. For the same reason,
4 /∈ POS{g}({d}) and the attribute h is indispensable in {h, g}. Therefore,
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{h, g} is a d-reduct of A. Therefore, there exists X ⊆ U such that (X,A)
is a decision bireduct and A is not d-reduct of A, and so Corollary 17 is not
true in decision tables. □

The next result recalls that, if a decision table satisfies that POSA({d}) = U
then the reciprocal of Proposition 25 is true, as it is showed in [25].

Proposition 27 ([25]). Let (U,Ad,VAd
,Ad) be a decision table such that

POSA({d}) = U and B ⊆ A. Then, the pair (U,B) is a decision bireduct
if and only if B is a d-reduct of A.

Notice that, the decision table given in Example 10 satisfies the equality
POSA({d}) = U . Taking into account the set of attributes B = {O,H,W},
we obtained that {O,H,W} is a d-reduct of A in the aforementioned ex-
ample. Then, applying Proposition 27, we can ensure that (U, {O,H,W})
is a decision bireduct.

The following property studies the connection between the indiscerni-
bility classes of the objects in a decision table and the bireducts with no
attribute.

Proposition 28. Let (X,B) be a decision bireduct with X ⊆ U and B ⊆
A. Then, B = ∅ if and only if X = [x]I({d}) for all x ∈ U .

Proof. Suppose that B = ∅. Hence, each pair of objects x, y ∈ X are
B-indiscernible. Therefore, since (X,B) is a decision bireduct, each pair of
objects x, y ∈ X must be d-indiscernible. As a consequence, X = [x]I({d})
for all x ∈ U .

We suppose now X = [x]I({d}) for all x ∈ U . By hypothesis, every
x, y ∈ X are d-indiscernible. Therefore, since B does not need to discern
any pair of objects, by the irreducibility condition of B, this set must be
the empty set. □

Notice that, unlike to information bireducts, a table reduced by classes
is not needed.

The correspondence between the set of objects X of a decision bireduct
(X,∅) and the indiscernibility classes [x]I({d}), for all x ∈ U , is illustrated
below.
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Example 29. Considering the subsets of objects X1 = {1, 2, 6, 8, 14} and
X2 = {3, 4, 5, 7, 9, 10, 11, 12, 13} of the decision table given in Example 10,
from the information displayed in Table 3, it is easy to see that (X1,∅) and
(X2,∅) are all decision bireducts with the empty set as subset of attributes.
In addition, taking into account the computations carried out in Exam-
ple 23, we have that [1]I({d}) = {1, 2, 6, 8, 14} and [3]I({d}) = {3, 4, 5, 7, 9, 10, 11, 12, 13}.
As a consequence, comparing these subsets of objects with the decision
bireducts (X1,∅) and (X2,∅), we obtain clearly a correspondence between
the sets of objects Xi with i ∈ {1, 2} and the indiscernibility classes [x]I({d})
for all x ∈ U . □

3.3. U-decision bireducts

This section continues our study of decision bireducts taking into account
an alternative definition, which also has been studied in [5, 24, 25]. In
addition, we will show some interesting results about this definition.

Definition 30. Given X ⊆ U and B ⊆ A, we say that the pair (X,B) is a
U-decision bireduct if every pair x ∈ X, y ∈ U are B-discernible when they
are d-discernible, B is X-irreducible and X is B-inextensible with respect
to this property.

Notice that, this definition is more restrictive than Definition 22 since
each object x ∈ X is compared with each object y ∈ U . As a consequence, in
the decision subtables generated by U -decision bireducts there is no element
triggering a contradiction in the original decision table. Now, we will clarify
this definition in the following example.

Example 31. Consider the decision table given in Example 10 and the
subset of attributes B = {O, T,H} ⊆ A. As we mentioned in Example 23,
the pair of objects 4, 14 and 5, 6 are the only objects d-discernible and B-
indiscernible. As a consequence, none of these pairs of elements should be
considered, because in the definition of U -decision bireduct every object in
X is compared with any object in the universe U . Hence, none of them can
appear in a U -decision bireduct. Therefore, according to Definition 30, the
unique candidate to U -decision bireduct with B as subset of attributes is
(U \ {4, 5, 6, 14}, B).

Clearly, all objects areB-discernible if they are d-discernible and the sub-
set of objects is B-inextensible by construction. Following the same reason-
ing that the one given in Example 23, we can ensure thatB is U\{4, 5, 6, 14}-
irreducible. Therefore, according to Definition 30, (U \ {4, 5, 6, 14}, B) is a
U -decision bireduct. □
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Continuing in the same line that the previous sections, we will show
some technical properties related to U -decision bireducts.

Proposition 32. Given (X,B) a U-decision bireduct, where X ⊆ U and
B ⊆ A, the following equivalence holds:

x ∈ X if and only if [x]I(B) ⊆ [x]I({d})

Proof. Supposing that x ∈ X, we prove that [x]I(B) ⊆ [x]I({d}). Since
x ∈ X, for every y ∈ U , if x, y are d-discernible then they are B-discernible.
Let z ∈ [x]I(B), then x, z are B-indiscernible and, as a consequence, they
are d-indiscernible. Therefore, z ∈ [x]I({d}).

Now, suppose that [x]I(B) ⊆ [x]I({d}) and y ∈ U such that x, y are
d-discernible. Then y /∈ [x]I({d}). Therefore, y /∈ [x]I(B) and x, y are B-
discernible. Taking into account that X is B-inextensible, we can ensure
that x ∈ X. □

It is convenient to emphasize the importance of this result. Specifically,
we deduce that x ∈ X if and only if there is no other object y ∈ U such that
x, y are B-indiscernible and d-discernible. Consequently, Proposition 32
proves that if there exists a U -decision bireduct with B ⊆ A as subset
of attributes that is the unique U -decision bireduct with B as subset of
attributes. In addition, from Proposition 32, we can deduce that if (X,B)
is a U -decision bireduct, then X = POSB({d}) because POSB({d}) = {x ∈
U | [x]I(B) ⊆ [x]I({d})}. In this case, we can compute U -decision bireducts in
an easier way than decision bireducts, since Proposition 32 is more powerful
than Proposition 24.

On the other hand, it is possible to obtain a stronger relationship be-
tween the positive region and U -decision bireducts, allowing the calculus of
these bireducts through the positive region, as it is showed in [25].

Proposition 33 ([25]). Let (U,Ad,VAd
,Ad) be a decision table such that

X ⊆ U and B ⊆ A. Then (X,B) is a U-decision bireduct if and only if
X = POSB({d}) and there is no subset B′ ⊂ B such that POSB′({d}) =
POSB({d}).

Analogously to decision bireducts, we introduce a result which relates
the definitions of U -decision bireduct to d-reduct.

Proposition 34. Given B ⊆ A, if the pair (U,B) is a U-decision bireduct
then POSB({d}) = U . Moreover, B is a d-reduct of A.
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Proof. The proof is straightforwardly obtained from Proposition 33. □

Just like it occurs in Proposition 25, the reciprocal of the last property
is not true in general. Coming back to Example 26, from Table 6 we deduce
thatB = {h, g} is a d-reduct ofA. Therefore, there is no subsetB′ ⊂ B such
that POSB′({d}) = POSB({d}). Taking into account that POSB({d}) =
{3, 4} and applying Proposition 33, we obtain that ({3, 4}, B) is the U -
decision bireduct with B as subset of attributes.

Equivalent results to Proposition 16 and Corollary 17 for decision tables
are deduced from Proposition 33.

Proposition 35. Given B ⊆ A, if B is a d-reduct of A then there exists
X ⊆ U such that (X,B) is a U-decision bireduct.

Proof. The proof is straightforwardly obtained from Proposition 33. □

Corollary 36. There exists X ⊆ U such that (X,A) is a U-decision bireduct
if and only if A is a d-reduct of A.

Proof. The proof is straightforwardly obtained from Proposition 33. □

The reciprocal of Proposition 34 is true when a decision table satisfies
that POSA({d}) = U , as it is showed in [25].

Proposition 37 ([25]). Let (U,Ad,VAd
,Ad) be a decision table such that

POSA({d}) = U and B ⊆ A. Then, the pair (U,B) is a U-decision bireduct
if and only if B is a d-reduct of A.

Finally, we introduce the result which studies U -decision bireducts whose
subset of attributes is B = ∅.

Proposition 38. Let X ⊆ U , B ⊆ A and (X,B) be a U-decision bireduct.
Suppose that there exist x, y ∈ U such that y /∈ [x]I({d}). Then, B = ∅ if
and only if X = ∅.

Proof. First of all, we suppose B = ∅. By Proposition 32, X ̸= ∅ if and
only if there exists x ∈ U such that [x]I(∅) ⊆ [x]I({d}). However, [x]I(∅) = U
and, by hypothesis y /∈ [x]I({d}), then we deduce that [x]I({d}) ̸= U . Then
X = ∅.

Now, we suppose X = ∅. Then, by Proposition 32, [x]I(B) ̸⊆ [x]I({d}) for
all x ∈ U . On the other hand, if B′ ⊆ B then [x]I(B) ⊆ [x]I(B′) ̸⊆ [x]I({d}).
Therefore, since [x]I(∅) ̸⊆ [x]I({d}), by the irreducibility condition of B, this
set must be the empty set. □

25



Hence, several properties of the three different classes of bireducts have
been studied, which have shed more light on the notion of bireduct. Next
section compares bireducts with another useful notion: value reduct.

4. Relation between value reducts and bireducts

This section is devoted to study the relationships among the different
notions of value reducts and bireducts. The importance of this study lies
on the comparison of two notions originally independent, so that the study
is divided into three different parts depending on the different notions of
bireduct in information tables and in decision tables.

4.1. Relation between information value reducts and information bireducts

This first part focuses on information tables in order to connect informa-
tion value reducts and information bireducts, that is, Definitions 5 and 11.
In this section, an information table (U,A,VA,A) will be fixed. Next re-
sult studies the belonging of objects to information bireducts by using the
notion of value reduct.

Proposition 39. Let x ∈ U and B ⊆ A be a value reduct of A for x. Then,
for each y0 ∈ [x]I(A) there exists (Xy0 , B) information bireduct such that y0 ∈
Xy0. Indeed, all information bireducts (X,B) satisfy that [x]I(A) ∩X ̸= ∅.

Proof. Given B ⊆ A being B a value reduct of A for x ∈ U , we will
prove that there exists (X0, B) information bireduct with y0 ∈ X0 being
y0 ∈ [x]I(A). Now, we consider the set X ′

0 = {y0} and we add to X ′
0 all

objects satisfying that they are B-discernible among them, so that the new
obtained set X0 be B-inextensible. In this way, we have that X0 is maximal.
Now, we will prove that B is X0-irreducible by reductio ad absurdum. We
suppose that there exists B′ ⊂ B such that, for all y, z ∈ X0, we have that
y, z are B′-discernible. Since B is a value reduct of A for x, we deduce
that [x]I(B′) ̸= [x]I(B). Specifically, [x]I(B) ⊆ [x]I(B′) but [x]I(B′) ̸⊆ [x]I(B).
Therefore, there exists w ∈ [x]I(B′) such that w /∈ [x]I(B). In addition, as
y0 ∈ [x]I(A), we obtain that [x]I(B′) = [y0]I(B′) and [x]I(B) = [y0]I(B). We
distinguish two cases:

• If w ∈ X0, since y0, w are B′-indiscernible, we obtain a contradiction.
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• If w /∈ X0, since X0 is B-inextensible by construction, there exists
z ∈ [w]I(B) such that z ∈ X0. Then the following chain holds:

z ∈ [w]I(B) ⊆ [w]I(B′) = [x]I(B′) = [y0]I(B′)

which lead us to conclude that y0, z are B′-indiscernible, obtaining
again a contradiction.

In any case, B is X0-irreducible and, as a consequence, (X0, B) is an
information bireduct with y0 ∈ X0 being y0 ∈ [x]I(A).

Now, we will prove that for each information bireduct (X,B) there exists
y ∈ [x]I(A) such that y ∈ X. We will prove it by reductio ad absurdum.
Given (X ′, B) an information bireduct, suppose that for each y ∈ [x]I(A),
we obtain that y /∈ X ′. Then, given y ∈ [x]I(A), there exists z ∈ X ′ such
that y, z are B-indiscernible, that is, z ∈ [y]I(B). Since B is a value reduct
of A for x, we deduce the equality [x]I(B) = [x]I(A). As y ∈ [x]I(A), we
have [y]I(A) = [x]I(A) and [y]I(B) = [x]I(B) too. Hence, the following chain
of equialities holds:

[y]I(A) = [x]I(A) = [x]I(B) = [y]I(B) = [z]I(B)

which implies that z ∈ [x]I(A), and as z ∈ X ′, this fact contradicts the
supposition considered on (X ′, B). □

In the particular case of [x]I(A) = {x}, the last result is simplified as
follows.

Corollary 40. Given B ⊆ A and x ∈ U such that [x]I(A) = {x} with B
value reduct of A for x, then every information bireduct (X,B) satisfies
that x ∈ X.

Proof. The proof follows from Proposition 39 considering that [x]I(A) =
{x}. □

This corollary allows to ensure that, given a value reduct for a certain
object x, then x belongs to all information bireducts whose subset of at-
tributes is the aforementioned value reduct. This fact is illustrated by means
of the following example.
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Example 41. Coming back to Examples 10 and 13, we can ensure that
[x]I(A) = {x} for all x ∈ U , so that we are in the environment of Corollary 40,
as well as B = {O, T,W} is a value reduct of A for the object 5 and
(U \ {10, 13}, B), (U \ {3, 10}, B), (U \ {4, 13}, B) and (U \ {3, 4}, B) are
all the information bireducts, with B as subset of attributes. Clearly, we
obtain that

U \ {3, 4, 10, 13} = U \ {10, 13}
⋂

U \ {3, 10}
⋂

U \ {4, 13}
⋂

U \ {3, 4}

and object 5 belongs to all information bireducts. □

Next result shows the close relationship between the notions of value
reducts and information bireducts. Specifically, we provide the required
conditions to the subsets of objects of all information bireducts with B as
subset of attributes, in order to guarantee the existence of a subset B′ ⊆ B
being a value reduct of A, and vice versa.

Proposition 42. Given B ⊆ A, X1, . . . , Xn ⊆ U and x ∈ U such that
(X1, B), . . . , (Xn, B) are all the information bireducts with B as subset of
attributes. Then for each i ∈ {1, . . . , n} there exists yi ∈ [x]I(A) such that
yi ∈ Xi if and only if there exists B′ ⊆ B such that B′ is a value reduct of
A for x.

Proof. Supposing that for each Xi there exists yi ∈ [x]I(A) such that
yi ∈ Xi, we will prove that there exists B′ ⊆ B such that B′ is a value
reduct of A for x. The proof will be done by reductio ad absurdum. We
suppose that B′ ⊆ B is not a value reduct of A for x, for all B′ ⊆ A.
Then [x]I(B′) ̸= [x]I(A) and since [x]I(A) ⊆ [x]I(B′), there exists z ∈ [x]I(B′)

satisfying z /∈ [x]I(A). In particular, considering B′ = B, we obtain x, z
are B-indiscernible, that is, yi, z are B-indiscernible for all yi ∈ [x]I(A).

Therefore, necessarily z /∈ Xi for all i ∈ {1, . . . , n}. Hence, z /∈
n⋃

i=1

Xi and

by Proposition 12 we have that z /∈ U , which leads us to a contradiction.
Now, assuming that there exists B′ ⊆ B such that B′ is a value reduct of

A for x, we will prove that there exists yi ∈ [x]I(A) such that yi ∈ Xi, for all
i ∈ {1, . . . , n}. By reductio ad absurdum we will suppose that there exists
i ∈ {1, . . . , n}, we have that y /∈ Xi for all y ∈ [x]I(A). Then, given yi [x]I(A),
there exists z ∈ Xi such that yi, z are B-indiscernible, so z ∈ [yi]I(B). Since
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yi ∈ [x]I(A), it is obtained that [x]I(B) = [yi]I(B) and [x]I(B′) = [yi]I(B′).
Hence, we obtain

[x]I(A) ⊆ [x]I(B) = [yi]I(B) ⊆ [yi]I(B′) = [x]I(B′) = [x]I(A)

That is due to monotony of equivalence classes and because B′ is a value
reduct of A for x. As a consequence, [yi]I(B) = [x]I(A) and then z ∈ [x]I(A),
obtaining a contradiction with the hypothesis considered about Xi. □

Now, we include the last result in the particular case of [x]I(A) = {x}.
Specifically, we show that if we know all the information bireducts, asso-
ciated with a fixed subset of attributes, we can delimit the study of value
reducts for the objects belonging to the intersection of these information
bireducts.

Corollary 43. Let B ⊆ A, X1, . . . , Xn ⊆ U , x ∈ U such that [x]I(A) = {x}
and (X1, B), . . . , (Xn, B) all the information bireducts with B as subset of

attributes. Then x ∈
n⋂

i=1

Xi if and only if there exists B′ ⊆ B such that B′

is a value reduct of A for x.

Proof. The proof follows from Proposition 42 due to [x]I(A) = {x}. □

On the other hand, next example will show that the condition B′ ⊆ B
is indispensable in Corollary 43, that is, B could not be a value reduct of
A for x, in general. As a consequence, the mentioned condition will be also
essential in Proposition 42.

Example 44. Consider the information table given in Example 10 and
the subset of attributes B = {O, T,W} ⊆ A. In Example 13 we calculated
all information bireducts with B as subset of attributes, obtaining that they
are (U \ {10, 13}, B), (U \ {3, 10}, B), (U \ {4, 13}, B) and (U \ {3, 4}, B).
Hence, it is easy to see that object 9 belongs to all of them.

On the other hand, from Table 2 we conclude that {O, T} is a value
reduct of A for the object 9. Therefore, {O, T,W} is not a value reduct
of A for the object 9 and so, we must include the condition B′ ⊆ B in
Proposition 42 and in Corollary 43.
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4.2. Relation between decision value reducts and decision bireducts

This second part focuses on decision tables in order to relate d-value
reducts and decision bireducts, that is, Definitions 9 and 22. From now on,
a decision table (U,Ad,VAd

,Ad) will be fixed. First of all, we introduce a
result which will be useful later.

Lemma 45. Let B ⊆ A be a d-value reduct of A for x ∈ U such that
[x]I(A) ⊆ [x]I({d}) and (X,B) be a decision bireduct. If x ∈ X then [x]I(B) ⊆
X.

Proof. Given y ∈ [x]I(B), we will prove that y ∈ X by reductio ad absur-
dum. Suppose that y /∈ X. Then, there exists z ∈ X such that y, z are
d-discernible and B-indiscernible. Since B is a d-value reduct of A for x and
[x]I(A) ⊆ [x]I({d}), we obtain that [x]I(B) ⊆ [x]I({d}). Hence, y ∈ [x]I({d}). As
a consequence, x, z ∈ X, they are d-discernible and B-indiscernible, which
leads us to a contradiction. Therefore, [x]I(B) ⊆ X. □

Following the same scheme of the previous section, the following result
studies the belonging of objects to decision bireducts by using the notion of
d-value reduct.

Proposition 46. Let B ⊆ A be a d-value reduct of A for x ∈ U such that
[x]I(A) ⊆ [x]I({d}). Then, there exists a decision bireduct (X0, B) such that
x ∈ X0 ⊆ U . Indeed, all decision bireducts (X,B) satisfy that [x]I(B) ⊆ X.

Proof. First of all, we will prove the existence of a decision bireduct
(X0, B) with x ∈ X0. The strategy followed in this proof consists of defin-
ing a set of objects X0 ⊆ U such that (X0, B) is a decision bireduct with
x ∈ X0. Consider X ′

0 = {x}. Since B is a d-value reduct of A for x with
[x]I(A) ⊆ [x]I({d}), we have for each a ∈ B that there exists za ∈ [x]I(B\{a})
such that za /∈ [x]I({d}). Now, consider X ′′

0 = {x, za1 , . . . , za|B|}. As B is
a d-value reduct of A for x and zai /∈ [x]I({d}) for all i ∈ {1, . . . , |B|}, we
deduce that zai /∈ [x]I(B). Then x, zai are d-discernible, B-discernible and
B \ {ai}-indiscernible, for all i ∈ {1, . . . , |B|}.

We suppose now that there exist j, k ∈ {1, . . . , |B|} such that zaj , zak
are d-discernible and B-indiscernible. Hence,

zak ∈
[
zaj

]
I(B)

⊆
[
zaj

]
I(B\{aj})

= [x]I(B\{aj})

Therefore, x, zak are B \ {aj}-indiscernible. By construction, x, zak are
also B \ {ak}-indiscernible. As a consequence, we can consider X ′′

0 \ {zaj}
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so that, for each a ∈ B, there exists za ∈ X ′′
0 \ {zaj} such that x, za are d-

discernible, B-discernible and B\{a}-indiscernible, being B X ′′
0 -irreducible.

Let X ′′′
0 be the set obtained from X ′′

0 , applying the previous procedure to
every pair of d-discernible and B-indiscernible objects zaj , zak . Therefore,
the new obtained set X ′′′

0 satisfies that every pair of objects d-discernible are
B-discernible and B is X ′′′

0 -irreducible with respect to this property. Now,
we can increase X ′′′

0 keeping this property until the set is B-inextensible,
being this last set X0. As a consequence, (X0, B) is a decision bireduct with
x ∈ X0.

Now, we will prove that for each decision bireduct (X,B) it obtains that
[x]I(B) ⊆ X. First of all, we will prove that x ∈ X by reductio ad absurdum.
Let (X ′, B) be a decision bireduct such that x /∈ X ′. AsX ′ is B-inextensible,
there exists y ∈ X ′ such that x, y are d-discernible and B-indiscernible, and
therefore y ∈ [x]I(B). Since B is a d-value reduct of A for x, we obtain
that [x]I(B) ⊆ [x]I({d}). Therefore y ∈ [x]I({d}). As a consequence, x, y are d-
indiscernible, which contradicts that x, y be d-discernible. Therefore, x ∈ X
and applying Lemma 45, [x]I(B) ⊆ X. □

Notice that the assumption [x]I(A) ⊆ [x]I({d}) is not restrictive since
otherwise the objects in the class [x]I(A) do not classify correctly (they have
different decisions) and so, reducing attributes is meaningless. Indeed, in
this case it is necessary to increase the number of attributes to obtain a
better classification.

Hence, this proposition guarantees that given a d-value reduct for a
certain object x, then x belongs to all decision bireducts whose subset of
attributes is the aforementioned d-value reduct. This fact is exemplified
below.

Example 47. Returning to Example 10, we have that B = {O,H} is a
d-value reduct of {O, T,H} and a d-value reduct of A for the object 1.
In addition, following a similar procedure to the one given in Example 23,
we have that (U \ {4, 6}, B), (U \ {6, 14}, B), (U \ {4, 5, 10}, B) and (U \
{5, 10, 14}, B) are all decision bireducts with B = {O,H} as subset of
attributes. Clearly, object 1 belongs to all of them, as Proposition 46 states.

□

To finish this section, it is important to emphasize that a similar re-
sult to Proposition 42 is not verified to decision bireducts. From the com-
putations of Example 23, we have that (U \ {5, 14}, {O, T,H}) and (U \
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{4, 5}, {O, T,H}) are all decision bireducts with {O, T,H} as subset of at-
tributes. Hence, it is easy to see that the object 6 belongs to all of them.

On the other hand, from Table 4, we have that {O,W} is a d-value
reduct of A for the object 6 and the pair of objects 5, 6 are d-discernible
and {O, T,H}-indiscernible. Therefore, {O, T,H} is not a d-value reduct
of A for the object 6. As a consequence, the attribute W must belong to
all d-value reducts of A for the object 6. Following an analogous reasoning
with the pair of objects 6, 7 and the subset of attributes {T,H,W} we can
conclude that the attribute O must belong to all d-value reducts of A for
the object 6. In short, since both attributes, O and W , must belong to all
d-value reducts of A for the object 6 and {O,W} is a d-value reduct, we
can conclude that {O,W} is the unique d-value reduct of A for the object
6. Since the object 6 belongs to all decision bireducts with {O, T,H} as
subset of attributes, {O,W} is the unique d-value reduct of A for the object
6 and {O,W} ̸⊆ {O, T,H}, we conclude that if an object x belongs to all
decision bireducts with a fixed subset of attributes B, then it may not exist
B′ ⊆ B with B′ a d-value reduct of A for the object x. As a consequence,
an analogous result to Proposition 42 for decision tables is not verified to
decision bireducts.

4.3. Relation between decision value reducts and U-decision bireducts

This section finishes our study relating decision value reducts and U -
decision bireducts. First of all, we introduce a result which will be useful
later.

Lemma 48. Let (X,B) be a U-decision bireduct where X ⊆ U and B ⊆ A.
Given x ∈ U , if x ∈ X then [x]I(B) ⊆ X.

Proof. Given y ∈ [x]I(B), we will prove that y ∈ X. Since x ∈ X, by
using Proposition 32, we obtain that [x]I(B) ⊆ [x]I({d}). As a consequence,
we obtain the following chain of equalities:

[y]I(B) = [x]I(B) ⊆ [x]I({d}) = [y]I({d})

As a consequence, by using Proposition 32 we obtain that y ∈ X. There-
fore, [x]I(B) ⊆ X. □

Next result studies the belonging of objects to U -decision bireducts by
using the notion of d-value reduct, obtaining a result similar to Proposi-
tion 46.
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Proposition 49. Let B ⊆ A be a d-value reduct of A for x ∈ U such that
[x]I(A) ⊆ [x]I({d}). Then, there exists X ⊆ U , such that the pair (X,B) is a
U-decision bireduct satisfying that [x]I(B) ⊆ X.

Proof. We define the set X = {y ∈ U | [y]I(B) ⊆ [y]I({d})}. Notice that,
y ∈ X if and only if for each object z ∈ U such that y, z are d-discernible,
they also are B-discernible. Therefore, X is B-inextensible. Furthermore,
x ∈ X because B is a d-value reduct of A for x and [x]I(A) ⊆ [x]I({d}).
Finally, since B is a d-value reduct of A for x, for each B′ ⊂ B we obtain
that [x]I(B′) ̸⊆ [x]I({d}). As a consequence, for each B′ ⊂ B there exists
yB′ ∈ U such that x, yB′ are d-discernible and B′-indiscernible. Hence, B is
X-irreducible. Since x ∈ X, (X,B) is a U -decision bireduct and applying
Lemma 48, we obtain that [x]I(B) ⊆ X. □

The following result also relates the notions of U -decision bireduct to
d-value reduct, in particular, it studies the existence of d-value reducts for
those objects which belong to U -decision bireducts. Notice that, this result
is equivalent to Proposition 42 for decision tables, by using the notion of
U -decision bireducts.

Proposition 50. Let (X,B) be a U-decision bireduct with X ⊆ U , B ⊆ A
and x ∈ U such that [x]I(A) ⊆ [x]I({d}). Then, [x]I(B) ⊆ X if and only if
there exists B′ ⊆ B such that B′ is a d-value reduct of A for x.

Proof. Supposing that [x]I(B) ⊆ X, we will prove that there exists B′ ⊆ B
such that B′ is a d-value reduct of A for x. We will prove it by reductio
ad absurdum. Consider x ∈ X and suppose that any subset of attributes
B′ ⊆ B is not a d-value reduct of A for x. Then [x]I(B′) ̸⊆ [x]I({d}), for all
B′ ⊆ B. However, by Proposition 32, [x]I(B) ⊆ [x]I({d}) which leads us to a
contradiction when B′ = B is considered in the expression above.

Now, supposing that there exists B′ ⊆ B such that B′ is a d-value reduct
of A for x, we will prove that [x]I(B) ⊆ X. Given y ∈ [x]I(B) we obtain

[y]I(B) = [x]I(B) ⊆ [x]I(B′) ⊆ [x]I({d}) = [y]I({d})

where [x]I(B) ⊆ [x]I(B′) because B′ ⊆ B and [x]I(B′) ⊆ [x]I({d}), since B′ is
a d-value reduct of A for x. Therefore, by using Proposition 32, we obtain
that y ∈ X. As a consequence, [x]I(B) ⊆ X. □

It is important to observe that B could not be a d-value reduct of A for
x, that is, the condition B′ ⊆ B is indispensable in Proposition 50 as we
will show next.
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Example 51. Consider the decision table given in Example 10 and the
subset of attributes B = {O, T,H} ⊆ A. In Example 31 we obtained
that (U \ {4, 5, 6, 14}, {O, T,H}) is the U -decision bireduct with {O, T,H}
as subset of attributes. From now on, we will focus on the object 1, which
belongs to that U -decision bireduct. From Table 3, we can conclude that the
pair of objects 1, 3 are d-discernible and {T,H,W}-indiscernible. Therefore,
attribute O must belong to all d-value reducts of A for the object 1. Now,
we compute all d-value reducts of A for the object 1.

On the one hand, the pair of objects 1, 9 are d-discernible and {O}-
indiscernible. Therefore, {O} is not a d-value reduct of A for the object 1.
From Table 4, we have that B′

1 = {O,H} is a d-value reduct of A for the
object 1.

On the other hand, from Table 3, it is easy to see that

[1]I({O,T}) = {1, 2} ⊆ [1]I({d}) = {1, 2, 6, 8, 14}

and, as a result, B′
2 = {O, T} is a d-value reduct of A for the object 1.

Notice that, {O,W} is not a d-value reduct of A for the object 1, since
we also obtain that the pair of objects 1, 9 are d-discernible and {O,W}-
indiscernible from Table 3.

Therefore, B′
1 and B′

2 are all the d-value reducts of A for the object 1,
being B′

1, B
′
2 ̸= B. Hence, B is not a d-value reduct of A for the object 1

and so, we must include the condition B′ ⊆ B in Proposition 50. □

5. Conclusions and further work

This paper has delved into the study of bireducts, analyzing new prop-
erties about bireducts whose subsets of objects or attributes are extreme
cases, that is, they are the whole set of objects or attributes contained in
the information/decision table or the empty set. Furthermore, we have
proven that the attribute set of an information bireduct provides a covering
of the universe of objects into maximal consistent subsystems.

The second part of the paper is focused on the relationship between
bireducts and value reducts in both information and decision tables, and
contains interesting results of these two originally independent notions which
really prove both are very well related. Furthermore, in order to clarify the
content of the paper, we have accompanied all the notions and results with
examples.

As future work, we will study the generalization of the results intro-
duced in this paper to the fuzzy environment. Furthermore, we will analyze
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more relationships between bireducts and value reducts, and their relation
and application to other frameworks, such as logic, formal concept analy-
sis and non-linear relation equations [12, 19, 20, 22]. In particular, we are
also interested in the study of the relationship between decision rules and
attribute implication, studied in formal concept analysis.
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[6] M. J. Beńıtez-Caballero, J. Medina, E. Ramı́rez-Poussa, and D. Ślȩzak. Rough-set-
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[8] M. J. Beńıtez-Caballero, J. Medina-Moreno, and E. Ramı́rez-Poussa. Bireducts in
Formal Concept Analysis, pages 191–198. Springer International Publishing, Cham,
2020.

[9] B. M. Brentan, S. Carpitella, J. Izquierdo, E. Luvizotto Jr, and G. Meirelles. Dis-
trict metered area design through multicriteria and multiobjective optimization.
Mathematical Methods in the Applied Sciences, n/a(n/a).

[10] J. Chen, J. Mi, B. Xie, and Y. Lin. A fast attribute reduction method for large
formal decision contexts. International Journal of Approximate Reasoning, 106:1 –
17, 2019.

[11] M. E. Cornejo, J. C. Dı́az-Moreno, and J. Medina. Multi-adjoint relation equations:
A decision support system for fuzzy logic. International Journal of Intelligent Sys-
tems, 32(8):778–800, 2017.

[12] M. E. Cornejo, D. Lobo, and J. Medina. Bipolar fuzzy relation equations sys-
tems based on the product t-norm. Mathematical Methods in the Applied Sciences,
42(17):5779–5793, 2019.

[13] C. Cornelis, R. Jensen, G. Hurtado, and D. Ślȩzak. Attribute selection with fuzzy
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