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Abstract

Usually, datasets contain imprecise data (noise), which can produce unspected
results on the considered mappings. For instance, this can happen with the
infimum and supremum operators, since both operators are straightforwardly
associated with the universal and existencial quantifiers, respectively. An in-
teresting possibility, of decreasing the impact of this possible noise in the final
results, is the consideration of generalized quantifiers.

This paper introduces four kind of generalized quantifiers based on adjoint
triples, which generalize the current approaches to a more flexible framework.
Different properties and characterizations are studied and they have been ap-
plied to formal concept analysis, presenting the conjunctive and implicative
concept-forming operators in this outstanding theory.
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1. Introduction

Universal and existential quantifiers are considered in many operators, such
as in the composition of boolean matrices, definition of crisp sets, etc. In these
cases an element is considered if all the properties are satisfied (with the uni-
versal quantifier) or if only one property is required (with the existential quan-
tifier). Hence, if there is some noise in the datasets, one object can wrongly
not be considered or be considered, respectively. The natural generalization of
universal and existential quantifiers to fuzzy sets and fuzzy logic is given by the
infimum and supremum operators [6, 23, 25, 26, 34], which also heritage this
drawback. In order to solve the gap between both notions, generalized quan-
tifiers [10, 12, 24, 27, 28, 42, 43] have been introduced. These new operators
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are intermediate quantifiers between the universal and existential quantifiers,
which can model fuzzy notions such as “Most” or “Many”, providing less strict
quantifiers to the applications.

On the other hand, formal concept analysis (FCA) [30] is a mathematical
framework, which has become an appealing research topic both from theoret-
ical [2, 3, 39] and applicative perspectives [1, 31, 29, 35, 41, 44]. The main
goal of this setting is to obtain information from relational datasets through
different branches. Two of the most relevant are the selection and classifica-
tion of the variables (attributes) more important in the problem to be mod-
eled [5? , 9, 21, 22, 32], and the computation of relationships among the vari-
ables (attribute implications) [8, 20, 14, 36]. These applications are based on the
concept-forming operators, which are the two fundamental extractors of infor-
mation. Multi-adjoint concept lattices [37, 38, 40] arose as a flexible fuzzy FCA
framework in which versatile algebraic structures can be considered [17, 22],
which generalizes other approaches [4, 6, 11].

In this paper, four alternative definitions of generalized quantifiers will be
defined in the general algebraic structure of multi-adjoint lattices. We will show
that these definitions satisfy similar properties of the monadic quantifiers of
type ⟨1⟩ introduced in [13, 43] (determined by fuzzy measures [27]), as well as
the useful characterization to simplify the expression of the original definition.
Continuing the first approximation given in [15], this paper will study the use
of these new quantifiers on the definitions of the concept-forming operators in
order to decrease the universal behaviour of the infimum in these operators. We
will focus the attention on the conjunctive and implicative definitions, showing
the main properties, a useful characterization and the relationship with other
interesting approaches. Specifically, we will prove that the implicative concept-
forming operators generalize the ones defined in threshold concept lattices [7,
19, 45], which shows the narrow relationship between these operators and the
implicative quantifiers. Thus, the new generalized quantifiers based on adjoint
triples offer more flexible quantifiers, and their consideration in FCA provides
alternative concept-forming operators that can better absorb some possible noise
usually presents in datasets.

The structure of the paper is as follows. Section 2 recalls the main needed
notions of multi-adjoint concept lattices. The conjunctive and implicative gen-
eralized quantifiers are introduced in Section 3, which are used in Section 4
to define the conjunctive and implicative quantifiers concept-forming opera-
tors. This section also contains the characterizations, the relationship with the
threshold concept lattices and different properties. The paper ends with the
conclusions and prospects for future work.

2. Multi-adjoint concept lattices

Multi-adjoint concept lattices arose as a new fuzzy approach to Formal Con-
cept Analysis [40]. Specifically, the philosophy of the multi-adjoint paradigm
was applied to obtain a general framework that could suitably accommodate
different fuzzy approaches given in the literature [6, 11, 33]. Before including
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the main notions of the multi-adjoint concept lattices framework, we need to
recall the basic operators to carry out the calculus in this framework.

Definition 1. Let (P1,≤1), (P2,≤2), (P3,≤3) be posets and &: P1×P2 → P3,
↙ : P3 ×P2 → P1, ↖ : P3 ×P1 → P2 be mappings. We say that (&,↙,↖) is an
adjoint triple with respect to (P1,≤1), (P2,≤2), (P3,≤3) if the following double
equivalence is satisfied:

x ≤1 z ↙ y iff x& y ≤3 z iff y ≤2 z ↖ x

for all x ∈ P1, y ∈ P2 and z ∈ P3. The previous double equivalence is called
adjoint property.

Adjoint triples are an interesting generalization of triangular norms and
their residuated implications, since they preserve their main properties but the
conjunctors are required to be neither commutative nor associative. A detailed
study of adjoint triples was presented in [16, 18], where the next properties were
proven.

Proposition 2. Let (&,↙,↖) be an adjoint triple with respect to the posets
(P1,≤1), (P2,≤2) and (P3,≤3), then the following properties are satisfied:

1. & is order-preserving on both arguments.

2. ↙ and ↖ are order-preserving on the first argument and order-reversing
on the second argument.

3. ⊥1 & y = ⊥3, ⊤3 ↙ y = ⊤1, for all y ∈ P2, when (P1,≤1,⊥1,⊤1) and
(P3,≤3,⊥3,⊤3) are bounded posets.

4. x&⊥2 = ⊥3 and ⊤3 ↖ x = ⊤2, for all x ∈ P1, when (P2,≤2,⊥2,⊤2) and
(P3,≤3,⊥3,⊤3) are bounded posets.

5. z ↖ ⊥1 = ⊤2 and z ↙ ⊥2 = ⊤1, for all z ∈ P3, when (P1,≤1,⊥1,⊤1)
and (P2,≤2,⊥2,⊤2) are bounded posets.

After introducing the definition of adjoint triple and some properties that
will be used later, we are in a position to recall the notions of multi-adjoint
frame and context.

Definition 3.

• A multi-adjoint frame is a tuple (L1, L2, P,&1, . . . ,&n) where (L1,⪯1)
and (L2,⪯2) are complete lattices, (P,≤) is a poset and (&i,↙i,↖i) is
an adjoint triple with respect to L1, L2, P , for all i ∈ {1, . . . , n}.

• A context is a tuple (A,B,R, σ) such that A and B are non-empty sets,
R is a P -fuzzy relation R : A × B → P and σ : A × B → {1, . . . , n} is
a mapping which associates any element in A × B with some particular
adjoint triple in the multi-adjoint frame (L1, L2, P,&1, . . . ,&n).
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Given a multi-adjoint frame and a context for that frame, different pieces of
information from databases containing a set of attributes A and a set of objects
B, related to each other by a binary relation R ⊆ A × B, can be identified.
These pieces of information are called multi-adjoint concepts and a hierarchy
can be established on them providing an algebraic structure called multi-adjoint
concept lattice.

Definition 4. Let (L1, L2, P,&1, . . . ,&n) be a multi-adjoint frame and (A,B,R, σ)
be a context.

• The concept-forming operators are the mappings ↑ : LB
2 −→ LA

1 and ↓ : LA
1 −→

LB
2 defined, for all g ∈ LB

2 , f ∈ LA
1 and a ∈ A, b ∈ B, as:

g↑(a) =
∧
b∈B

(
R(a, b) ↙σ(a,b) g(b)

)
f↓(b) =

∧
a∈A

(
R(a, b) ↖σ(a,b) f(a)

)
• A multi-adjoint concept is a pair ⟨g, f⟩ satisfying that g ∈ LB

2 , f ∈ LA
1

and that g↑ = f and f↓ = g.

• A multi-adjoint concept lattice is the set

M = {⟨g, f⟩ | g ∈ LB
2 , f ∈ LA

1 and g↑ = f, f↓ = g}

in which the ordering is defined by ⟨g1, f1⟩ ⪯ ⟨g2, f2⟩ if and only if g1 ⪯2

g2, or equivalently f2 ⪯1 f1.

3. Conjunctive and implicative generalized quantifiers

Generalized quantifiers were introduced by Štěpnička and Holčapek in [43] in
order to increase the versatility of fuzzy relational compositions in applications.
We are interested in generalizing the notion of generalized quantifier and in order
to reach this goal, two different approaches for defining generalized quantifiers,
by using either the conjunctor or the implications involved in adjoint triples,
will be presented. These approaches will increase the flexibility of the notion of
generalized quantifier given in [43].

Continuing on the line proposed by Štěpnička and Holčapek [43], we will use
fuzzy measures invariant with respect to the cardinality to define new versions
of generalized quantifier. For that reason, we need to recall the notion of fuzzy
measure invariant with respect to the cardinality.

Definition 5. Let U be a finite universe and P(U) be the powerset of U .
We will say that the mapping µ : P(U) → [0, 1] is a fuzzy measure, if it is an
increasing mapping satisfying that µ(∅) = 0 and µ(U) = 1. We will say that
the fuzzy measure µ is invariant with respect to the cardinality, if the following
condition holds:
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If |A| = |B| then µ(A) = µ(B), for all A,B ∈ P(U)

where | · | denotes the cardinality of a set.

To illustrate the previous notion, we will show two fuzzy measures which
were exemplified in [43]. Specifically, the mapping µrc : P(U) → [0, 1] defined

as µrc(A) = |A|
|U| , for all A ∈ P(U), is a fuzzy measure invariant with respect

to the cardinality. Notice that, if φ : [0, 1] → [0, 1] is an increasing mapping
such that φ(0) = 0 and φ(1) = 1, then the mapping µφ : P(U) → [0, 1] defined
as µφ(A) = φ(µrc(A)), for all A ∈ P(U), is also a fuzzy measure invariant
with respect to the cardinality. The former fuzzy measure µrc is called relative
cardinality whereas the latter fuzzy measure µφ is called relative cardinality
modified by φ or simply modified relative cardinality.

After recalling and exemplifying the concept of fuzzy measure invariant with
respect to the cardinality, we proceed to expose in detail the developed research
work.

3.1. Conjunctive generalized quantifiers

This section will provide a new definition of generalized quantifier where the
calculations with the fuzzy measure are computed by using the conjunctor of
an adjoint triple. Properties related to different computation procedures for
computing the proposed of generalized quantifier in an efficient way will be
presented. It is convenient to mention that the proofs of these properties will
clarify different parts of the ones given in [43]. From now on, we will consider
adjoint triples defined on the complete lattice ([0, 1],≤) assuming that their
conjunctors have 1 as left and right identity element.

Definition 6. Let U be a non-empty finite universe, F(U) = [0, 1]U be the
set of fuzzy sets of U on [0, 1], P(U) be the powerset of U , µ : P(U) → [0, 1] be
a fuzzy measure invariant with respect to the cardinality and (&,↙,↖) be an
adjoint triple w.r.t ([0, 1],≤) such that x& 1 = 1 &x = x, for all x ∈ [0, 1].

• A mapping Qµ : F(U) → [0, 1] defined, for all C ∈ F(U), as:

Qµ(C) =
∨

D∈P(U)

(( ∧
u∈D

C(u)

)
& µ(D)

)
(1)

is called right conjunctive generalized quantifier determined by the fuzzy
measure µ.

• A mapping µQ : F(U) → [0, 1] defined, for all C ∈ F(U), as:

µQ(C) =
∨

D∈P(U)

(
µ(D) &

( ∧
u∈D

C(u)

))
(2)

is called left conjunctive generalized quantifier determined by the fuzzy
measure µ.
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Notice that, in order to present aesthetic formulas above, we have considered
that D be the empty set although this case does not affect to the computation
since it provides the null value 0.

The universal and existential quantifiers can be obtained from Definition 6
considering the minimum and maximum fuzzy measures, respectively, as the
following proposition shows. An analogous result can be obtained for a left
conjunctive generalized quantifier.

Proposition 7. Given a non-empty finite universe U , the right conjunctive
generalized quantifiers Q∀ and Q∃ determined by the minimum and maximum
fuzzy measures µ∀ and µ∃, respectively, which are defined as follows:

µ∀(D) =

{
1 if D = U
0 otherwise

µ∃(D) =

{
0 if D = ∅
1 otherwise

represent the universal and existencial quantifiers. That is, for all C ∈ F(U),
the following equalities are satisfied:

Q∀(C) =
∧
u∈U

C(u)

Q∃(C) =
∨
u∈U

C(u)

Proof. Considering the universal quantifier Q∀, we have that the following
chain of equalities hold, for all C ∈ F(U).

Q∀(C) =
∨

D∈P(U)
D ̸=U

(( ∧
u∈D

C(u)

)
& µ∀(D)

)
∨

((∧
u∈U

C(u)

)
& µ∀(U)

)

=
∨

D∈P(U)
D ̸=U

(( ∧
u∈D

C(u)

)
& 0

)
∨

((∧
u∈U

C(u)

)
& 1

)

(a)
=

∧
u∈U

C(u)

where (a) is obtained by Property 4 of Proposition 2 and taking into account
that & has 1 as right identity element.
Now, we will carry out the proof for the existencial quantifier. For all C ∈ F(U),
we obtain that:
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Q∃(C) =
∨

D∈P(U)

(( ∧
u∈D

C(u)

)
& µ∃(D)

)

=
∨

D∈P(U)

(( ∧
u∈D

C(u)

)
& 1

)

(b)
=

∨
D∈P(U)

( ∧
u∈D

C(u)

)
(c)
=

∨
u∈U

C(u)

where (b) holds because & has 1 as right identity element and (c) is obtained

since, there exists u∨ ∈ U , such that C(u∨) =
∨
u∈U

C(u) and clearly the supre-

mum is reachable for D = {u∨}. □

It is important to note that the notion of right/left conjunctive generalized
quantifier given in Definition 6 is not suitable, from a computational point of
view, since the computation over all sets from P(U) is required. We propose
an alternative computation procedure which makes use of the property of being
invariant with respect to the cardinality of fuzzy measures, in order to compute
the conjunctive generalized quantifier in a more efficient way.

Theorem 8. Let U = {u1, . . . , un} be a universe and Qµ and µQ be the right
and left conjunctive generalized quantifiers, respectively, determined by a fuzzy
measure µ invariant with respect to the cardinality. Then,

Qµ(C) =

n∨
i=1

C(uπ(i)) & µ({u1, . . . , ui})

µQ(C) =

n∨
i=1

µ({u1, . . . , ui}) & C(uπ(i))

for all C ∈ F(U) and where π is a permutation on {1, 2, . . . , n} such that
C(uπ(1)) ≥ C(uπ(2)) ≥ · · · ≥ C(uπ(n)).

Proof. Since both equalities are similar, only the first one will be proved.
Consider an arbitrary fuzzy set C ∈ F(U) and a permutation π on {1, 2, . . . , n},
such that C(uπ(1)) ≥ C(uπ(2)) ≥ · · · ≥ C(uπ(n)). Hence, we can ensure that the
following equality holds:

C(uπ(i)) =
∧

u∈{uπ(1),...,uπ(i)}
C(u)
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which implies that, if |D| = i then:

C(uπ(i)) & µ(
{
uπ(1), ..., uπ(i)

}
) =

 ∧
u∈{uπ(1),...,uπ(i)}

C(u)

& µ(D) (3)

Moreover, if |D| = i then there exists j ≥ i such that uπ(j) ∈ D and therefore,
the following chain of inequalities is satisfied:∧

u∈D

C(u) ≤ C(uπ(j)) ≤ C(uπ(i)) =
∧

u∈{uπ(1),...,uπ(i)}
C(u)

Therefore, by the monotonicity of &, we obtain that:( ∧
u∈D

C(u)

)
& µ(D) ≤

 ∧
u∈{uπ(1),...,uπ(i)}

C(u)

& µ(D) (4)

Moreover, by the supremum property, we have that:∨
D∈P(U)
|D|=i

( ∧
u∈D

C(u)

)
&µ(D) =

∨
D∈P(U)
|D|=i

D ̸={uπ(1),...,uπ(i)}

( ∧
u∈D

C(u)

)
&µ(D)

∨ ∧
u∈{uπ(1),...,uπ(i)}

C(u)

&µ(D)

(a)
=

 ∧
u∈{uπ(1),...,uπ(i)}

C(u)

&µ(D)

(b)
= C(uπ(i)) & µ({u1, ..., ui})

(5)

where (a) is deduced by Equation (4) and (b) by Equation (3). Finally, the
following chain of equalities can be deduced:

Qµ(C) =
∨

D∈P(U)

(( ∧
u∈D

C(u)

)
& µ(D)

)

=

n∨
i=1

 ∨
D∈P(U)
|D|=i

(( ∧
u∈D

C(u)

)
& µ(D)

)
(c)
=

n∨
i=1

C(uπ(i)) & µ({u1, ..., ui})

where (c) holds from Equation (5). □
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The following result proposes to compute the right and left conjunctive gen-
eralized quantifiers considering a fuzzy measure built from the relative cardinal-
ity, which arises as a direct consequence of Theorem 3.

Corollary 9. Let U = {u1, . . . , un} be a universe, φ : {1, . . . , n} → [0, 1] be an
increasing mapping such that φ(1) = 1 and µ be a fuzzy measure built from the
relative cardinality, by using φ. Then, for all C ∈ F(U), we have that

Qµ(C) =

n∨
i=1

C(uπ(i)) & φ(i/n)

µQ(C) =

n∨
i=1

φ(i/n) & C(uπ(i))

where π is a permutation on {1, 2, . . . , n}, such that C(uπ(1)) ≥ C(uπ(2)) ≥
· · · ≥ C(uπ(n)).

3.2. Implicative generalized quantifiers

In this section we are going to extend the notion of generalized quantifier to
the case in which the measure is operated through the implication ↖ or ↙. We
consider the same framework of the previous section, i.e., we will work with an
adjoint triple (&,↖,↙) defined in the complete lattice ([0, 1],≤) and we will
require & to satisfy the boundary condition with 1 in both arguments. Likewise,
the results analogous to those of the previous section are established. Its proofs
are completely similar to those of the previous results, so they are omitted.

Definition 10. Let U be a non-empty finite universe, F(U) = [0, 1]U be the
set of fuzzy sets of U on [0, 1], P(U) be the powerset of U , µ : P(U) → [0, 1] be
a fuzzy measure and (&,↙,↖) be an adjoint triple w.r.t ([0, 1],≤) such that
x& 1 = 1 &x = x, for all x ∈ [0, 1].

• A mapping Q↙
µ : F(U) → [0, 1] defined, for all C ∈ F(U), as:

Q↙
µ (C) =

∧
D∈P(U)

(( ∨
u∈D

C(u)

)
↙ µ(D)

)
(6)

is called down implicative generalized quantifier determined by the fuzzy
measure µ.

• A mapping Q↖
µ : F(U) → [0, 1] defined, for all C ∈ F(U), as:

Q↖
µ (C) =

∧
D∈ P(U)

(( ∨
u∈D

C(u)

)
↖ µ(D)

)
(7)

is called up implicative generalized quantifier determined by the fuzzy
measure µ.
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In this case, the existential and universal quantifiers can be obtained from
Definition 10 considering the minimum and maximum fuzzy measures, respec-
tively. An analogous result can be obtained for the respective up implicative
generalized quantifier.

Proposition 11. Given a non-empty finite universe U , the down implicative
generalized quantifiers Q↙

µ∀
and Q↙

µ∃
determined by the minimum and maximum

fuzzy measures µ∀ and µ∃ represent, respectively, the existencial and universal
quantifiers. That is, for all C ∈ F(U), the following equalities are satisfied:

Q↙
µ∀

(C) =
∨
u∈U

C(u)

Q↙
µ∃

(C) =
∧
u∈U

C(u)

When the measure is invariant with respect to the cardinality, the follow-
ing characterizations hold, which are similar to the ones given to conjunctive
generalized quantifier.

Theorem 12. Let U = {u1, . . . , un} be a universe and Q↙
µ and Q↖

µ be the
down and up implicative generalized quantifiers, respectively, determined by a
fuzzy measure µ invariant with respect to the cardinality. Then,

Q↙
µ (C) =

n∧
i=1

C(uπ(i)) ↙ µ({u1, ..., ui})

Q↖
µ (C) =

n∧
i=1

C(uπ(i)) ↖ µ({u1, ..., ui})

for all C ∈ F(U) and where π is a permutation on {1, 2, . . . , n} such that
C(uπ(1)) ≤ C(uπ(2)) ≤ · · · ≤ C(uπ(n)).

This last result can also be rewritten as follows.

Corollary 13. Let U = {u1, . . . , un} be a universe, φ : {1, . . . , n} → [0, 1] be
an increasing mapping such that φ(1) = 1 and µ be a fuzzy measure built from
the relative cardinality, by using φ. Then, for all C ∈ F(U), we have that

Q↙
µ (C) =

n∧
i=1

C(uπ(i)) ↙ φ(i/n)

Q↖
µ (C) =

n∧
i=1

C(uπ(i)) ↖ φ(i/n)

where π is a permutation on {1, 2, . . . , n}, such that C(uπ(1)) ≤ C(uπ(2)) ≤
· · · ≤ C(uπ(n)).
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4. Formal-concept operators with generalized quantifiers

This section will use generalized quantifiers to provide formal-concept op-
erators with a weaker existential character. From the definitions introduced in
the previous section we have two possibilities depending on if conjunctive or im-
plicative generalized quantifiers are considered. From now on, a multi-adjoint
frame (L1, L2, P,&1, . . . ,&n), with L1 = L2 = P = [0, 1], a context (A,B,R, σ)
and an extra adjoint triple (&,↙,↖) on [0, 1] will be fixed.

The following definition uses the conjunctive version to present a general-
ization of the usual fuzzy concept-forming operators on multi-adjoint concept
lattices. Notice that four possibilities exist considering the two quantifiers Qµ

and µQ. Since all of them have similar main properties, only one will be defined
next.

Definition 14. Given two families of fuzzy measures {µb
A | b ∈ B}, {µa

B | a ∈
A} on A and B, respectively, which are invariant with respect to the cardinality
and b

AQ, Qa
B the quantifiers determined by the fuzzy measures µb

A and µa
B ,

respectively, the conjunctive quantified concept-forming operators are denoted
as ↑

AQ : LB
2 −→ LA

1 and ↓QB : LA
1 −→ LB

2 , where LB
2 and LA

1 denote the set of
fuzzy subsets g : B → L2 and f : A → L1, respectively, and are defined, for all
g ∈ LB

2 , f ∈ LA
1 and a ∈ A, b ∈ B, as:

g↑QB (a) =
∨

X∈P(B)

(∧
b∈X

R(a, b) ↙σ(a,b) g(b)

)
&µa

B(X) (8)

f↓AQ

(b) =
∨

Y ∈P(A)

µb
A(Y ) &

(∧
a∈Y

R(a, b) ↖σ(a,b) f(a)

)
(9)

The previous definition has been selected from the four possibilities for the
simple reason that & be analogous to the adjoint triples of the lattice, or even
equal to one of them, evaluating “attributes” in the left argument and “objects”
in the right one.

From Corollary 9, we obtain the following characterization of the conjunc-
tive quantified concept-forming operators, where the fuzzy sets φb

A and φa
B are

defined from the two fuzzy measures µb
A and µa

B as follows:

φb
A(j/m) = µb

A({a1, . . . , aj})

φa
B(i/n) = µa

B({b1, . . . , bi})

for all i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}, a ∈ A, b ∈ B, subsets {a1, . . . , aj} ⊆ A,
{b1, . . . , bi} ⊆ B, with |A| = m and |B| = n.

Proposition 15. In the framework of Definition 14, the quantified concept-
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forming operators ↑
AQ : LB

2 −→ LA
1 and ↓QB : LA

1 −→ LB
2 , satisfy:

g↑QB (a) =

n∨
i=1

(
R(a, bπa(i)) ↙σ(a,bπa(i)) g(bπa(i))

)
& φa

B(i/n) (10)

f↓AQ

(b) =

m∨
j=1

φb
A(j/m) &

(
R(aλb(j), b) ↖σ(aλb(j)

,b) f(aλb(j))
)

(11)

for all g ∈ LB
2 , f ∈ LA

1 and a ∈ A, b ∈ B, where πa and λb are permutations
such as:

R(a, bπa(i+1)) ↙σ(a,bπa(i+1)) g(bπa(i+1)) ≤ R(a, bπa(i)) ↙σ(a,bπa(i)) g(bπa(i))

R(aλb(j+1), b) ↖σ(aλb(j+1),b) f(aλb(j+1)) ≤ R(aλb(j), b) ↖σ(aλb(j)
,b) f(aλb(j))

Proof. The proof straightforwardly follows from Definition 14 and Theorem 8.
□

As a consequence, Definition 14 provides a quantified version of the concept-
forming operators, which reduces the existential character of the original ones.
For example, given the fuzzy measures µa

B : B → [0, 1], µb
A : A → [0, 1] defined

as

µa
B(X) =

{
1 if X = B or X = B \ {b}, with b ∈ B

0 otherwise

µb
A(Y ) =

{
1 if Y = A or Y = A \ {a}, with a ∈ A

0 otherwise

for all a ∈ A, b ∈ B, X ∈ P(B), Y ∈ P(A). They clearly are invariant with
respect to the cardinality and the associated fuzzy sets φa

B and φb
A are defined

as

φa
B(i/n) =

{
1 if i = n, n− 1

0 otherwise

φb
A(j/m) =

{
1 if j = m,m− 1

0 otherwise

for all i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}, with |B| = n and |A| = m. From
Proposition 15, we can easily show that the consideration of these measures
reduce the existentially character of the original definition removing the worst
case, that is, the smallest value of the computation: R(a, bπa(n)) ↙σ(a,bπa(n))

g(bπa(n)) and R(aλb(m), b) ↖σ(aλb(m),b) f(aλb(m)), respectively. Therefore, for
instance, instead of obtaining:

g↑(a) =
∧
b∈B

(
R(a, b) ↙σ(a,b) g(b)

)
= R(a, bπa(n)) ↙σ(a,bπa(n)) g(bπa(n))
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R b1 b2 b3

a1 0.75 1 0.75

a2 0.25 0.5 0.75

a3 0.25 0.5 0.5

a4 0 0.75 1

Table 1: Relation R of Example 16

by the definition of the permutation πa, we obtain that

g↑QB (a) =

n∨
i=1

(
R(a, bπa(i)) ↙σ(a,bπa(i)) g(bπa(i))

)
& φa

B(i/n)

=

n∨
i=n−1

(
R(a, bπa(i)) ↙σ(a,bπa(i)) g(bπa(i))

)
& 1

=

n∨
i=n−1

(
R(a, bπa(i)) ↙σ(a,bπa(i)) g(bπa(i))

)
= R(a, bπa(n−1)) ↙σ(a,bπa(n−1)) g(bπa(n−1))

where the first and second equalities follow from the boundary condition of &
with respect to the bottom and top elements in [0, 1], and the last equality holds
by the definition of πa.

Example 16. Let ([0, 1],&G,&L) be the multi-adjoint frame composed of the
compete lattice ([0, 1],≤) and the Gödel and  Lukasiewicz conjunctors, &G and

&L, respectively (for more details, see [16]). The considered context (A,B,R, σ)
is composed of the set of attributes A = {a1, a2, a3, a4}, the set of objects
B = {b1, b2, b3}, the relation R : A × B → [0, 1] displayed in Table 16 and the
mapping σ is defined, for all a ∈ A and b ∈ B, as:

σ(a, b) =

{
a&L b if a = a4

a&G b otherwise

In order to illustrate the characterization of the conjunctive quantified concept-
forming operators, we consider the product conjunctor &P : [0, 1]× [0, 1] → [0, 1]
defined as x&P y = x ∗ y, for all x, y ∈ [0, 1], the fuzzy sets g : B → [0, 1],
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φa
B : {1, 2, 3} → {0, 1} and φb

A : {1, 2, 3, 4} → {0, 1}, which are defined1 as:

g(b) =

{
1 if b = b3

0.5 otherwise

φa
B(i/3) =

{
1 if i ∈ {2, 3}
0 otherwise

φb
A(j/4) =

{
1 if j ∈ {3, 4}
0 otherwise

for all b ∈ B, a ∈ A, and the following permutations πa1
, πa2

, πa3
, πa4

: {1, 2, 3} →
{1, 2, 3} defined as:

πa1
(i) =


2 if i = 1

1 if i = 2

3 if i = 3

πa2(i) = πa3(i) = πa4(i) =


2 if i = 1

3 if i = 2

1 if i = 3

We fix the attribute a1 and we check that the next inequality holds for i = 1
and i = 2:

R(a1, bπa1
(i+1)) ↙σ(a1,bπa1

(i+1)) g(bπa1
(i+1)) ≤ R(a1, bπa1

(i)) ↙σ(a1,bπa1 (i)) g(bπa1
(i))

• Case i = 1.

R(a1, bπa1
(2)) ↙σ(a1,bπa1

(2)) g(bπa1
(2)) = R(a1, b1) ↙σ(a1,b1) g(b1)

= 0.75 ↙G 0.5

≤ 1 ↙G 0.5

= R(a1, b2) ↙σ(a1,b2) g(b2)

= R(a1, bπa1
(1)) ↙σ(a1,bπa1 (1)) g(bπa1 (1))

1Notice that, due to the definitions of φb
A and φa

B , any adjoint conjunctor could be con-
sidered satisfying the boundary condition with the top element.
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• Case i = 2.

R(a1, bπa1
(3)) ↙σ(a1,bπa1 (3)) g(bπa1 (3)) = R(a1, b3) ↙σ(a1,b3) g(b3)

= 0.75 ↙G 1

= 0.75

≤ 1

= 0.75 ↙G 0.5

= R(a1, b1) ↙σ(a1,b1) g(b1)

= R(a1, bπa1 (2)) ↙σ(a1,bπa1
(2)) g(bπa1 (2))

Analogously, it can be proven that the inequality

R(a, bπa(i+1)) ↙σ(a,bπa(i+1)) g(bπa(i+1)) ≤ R(a, bπa(i)) ↙σ(a,bπa(i)) g(bπa(i))

is satisfied for i ∈ {1, 2}, when a ∈ {a2, a3, a4}.
Since the hypotheses required in Proposition 15 are satisfied, we can apply

the characterization of the conjunctive quantified concept-forming operators,
obtaining the following chain of equalities:

g↑QB (a1) =

3∨
i=1

(
R(a1, bπa1 (i)) ↙σ(a1,bπa1

(i)) g(bπa1 (i))
)

&P φa1

B (i/3)

=

3∨
i=2

(
R(a1, bπa1

(i)) ↙σ(a1,bπa1 (i)) g(bπa1 (i))
)

&P 1

=

3∨
i=2

(
R(a1, bπa1

(i)) ↙σ(a1,bπa1
(i)) g(bπa1

(i))
)

= R(a1, bπa1
(2)) ↙σ(a1,bπa1 (2)) g(bπa1 (2))

= R(a1, b1) ↙σ(a1,b1) g(b1)

= 0.75 ↙G 0.5 = 1

Notice that, the second and third equalities are deduced from the boundary
condition of &P with respect to 0 and 1, and the fourth equality holds by the
definition of πa1

.
Following an analogous reasoning to the previous one, it is easy to check the

following equalities:

g↑QB (a2) = R(a2, bπa2
(2)) ↙σ(a2,bπa2

(2)) g(bπa2
(2))

= R(a2, b3) ↙σ(a2,b3) g(b3)

= 0.75 ↙G 1 = 0.75

g↑QB (a3) = R(a3, bπa3 (2)) ↙σ(a3,bπa3
(2)) g(bπa3 (2))

= R(a3, b3) ↙σ(a3,b3) g(b3)

= 0.5 ↙G 1 = 0.5
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g↑QB (a4) = R(a4, bπa4
(2)) ↙σ(a4,bπa4

(2)) g(bπa4
(2))

= R(a4, b3) ↙σ(a4,b3) g(b3)

= 1 ↙L 1 = 1

Therefore, g↑QB = (a1/1, a2/0.75, a3/0.5, a4/1). As it was previously com-
mented, these values correspond to the second smallest values in the computa-
tion of the original concept-forming operators (Definition 4).

g↑(a1) = inf{R(a1, b) ↙G g(b) | b ∈ B} = inf{1, 1, 0.75} = 0.75

g↑(a2) = inf{R(a2, b) ↙G g(b) | b ∈ B} = inf{0.25, 1, 0.75} = 0.25

g↑(a3) = inf{R(a3, b) ↙G g(b) | b ∈ B} = inf{0.25, 1, 0.5} = 0.25

g↑(a4) = inf{R(a4, b) ↙ L g(b) | b ∈ B} = inf{0.5, 1, 1} = 0.5

Hence, the quantified concept-forming operators can correct some possible
noise in the data. For example, the value R(a4, b1) = 0 could be given by the
user because he/she did not know the relationship between a4 and b1 instead
of that b1 does not have attribute a4. Hence, this error from the user will
provide that g↑(a4) = 0.5, however, it would be more convenient to consider
g↑QB (a4) = 1, of course, taking into account that a value is not considered and
we are obtaining conclusions without the consideration of all dataset. In this toy
example with only three objects, the quantifier operators provide great changes,
but in bigger datasets, this consideration is more convenient.

From now on, we consider the fuzzy set f : A → [0, 1] defined as

f(a) =


1 if a ∈ {a1, a4}
0.75 if a = a2

0.5 if a = a3

and the permutations λb1 , λb2 , λb3 : {1, 2, 3, 4} → {1, 2, 3, 4} defined as:

λb1(j) =


1 if j = 1

3 if j = 2

2 if j = 3

4 if j = 4

λb2(j) =


1 if j = 1

3 if j = 2

4 if j = 3

2 if j = 4

λb3(j) =


2 if j = 1

3 if j = 2

4 if j = 3

1 if j = 4

in order to compute f↓AQ

(b), for all b ∈ B, by using Proposition 15. Fixed b ∈ B
and making simple computations, it can easily be checked that the following
inequality holds, for all b ∈ B and j ∈ {1, 2, 3}:

R(aλb(j+1), b) ↖σ(aλb(j+1),b) f(aλb(j+1)) ≤ R(aλb(j), b) ↖σ(aλb(j)
,b) f(aλb(j))

Fixed the object b1, under the conditions of Proposition 15, we can apply
the characterization of the conjunctive quantified concept-forming operators.
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Taking into account the boundary condition of &P with respect to 0 and 1 and
the definition of the permutation λb1 , we deduce the following chain of equalities:

f↓AQ

(b1) =

4∨
j=1

φb1
A (j/4) &P

(
R(aλb1

(j), b1) ↖σ(aλb1
(j),b1) f(aλb1

(j))
)

=

4∨
j=3

1 &P

(
R(aλb1

(j), b1) ↖σ(aλb1
(j),b1) f(aλb1

(j))
)

=

4∨
j=3

(
R(aλb1

(j), b1) ↖σ(aλb1
(j),b1) f(aλb1

(j))
)

= R(aλb1
(3), b1) ↖σ(aλb1

(3),b1) f(aλb1
(3))

= R(a2, b1) ↖σ(a2,b1) f(a2)

= 0.25 ↖G 0.75 = 0.25

Analogously, we compute f↓AQ

(b2) and f↓AQ

(b3) as follows:

f↓AQ

(b2) = R(aλb2
(3), b2) ↖σ(aλb2

(3),b2) f(aλb2
(3))

= R(a4, b2) ↖σ(a4,b2) f(a4)

= 0.75 ↖L 1 = 0.75

f↓AQ

(b3) = R(aλb3
(3), b3) ↖σ(aλb3

(3),b3) f(aλb3
(3))

= R(a4, b3) ↖σ(a4,b3) f(a4)

= 1 ↖L 1 = 1

Thus, f↓AQ

= (b1/0.25, b2/0.75, b3/1). This example illustrates that the
fuzzy sets φB and φA, which are used in the definition of the conjunctive
quantified concept-forming operators given in Proposition 15, reduce the ex-
istential character of the original definition. Specifically, the smallest values
involved in the computations of g↑QB (a) and f↓AQ

(b) are removed, that is
R(a, bπa(3)) ↙σ(a,bπa(3)) g(bπa(3)) and R(aλb(4), b) ↖σ(aλb(4)

,b) f(aλb(4)), respec-
tively. It is also important to mention that the use of the characterization of
the conjunctive quantified concept-forming operators (Proposition 15), instead
of the operators given in Definition 14, remarkably reduce the calculations. □

Now, we will study the dual definition with respect to the implicative gener-
alized quantifiers. Depending of the selection of implications ↙ and ↖, we also
have four possibilities to define the implicative quantified concept-forming oper-
ators. Next, we consider one of these possibilities and the rest can analogously
be defined.

Definition 17. Given a multi-adjoint frame and a context for that frame,
{µb

A | b ∈ B}, {µa
B | a ∈ A} two families of fuzzy measures on A and B,

17



respectively, which are invariant with respect to the cardinality and Qb
A, Qa

B

the quantifiers determined by the fuzzy measures µb
A and µa

B , respectively, the
implicative quantified concept-forming operators are denoted as ↑IQ : LB

2 −→ LA
1

and ↓IQ

: LA
1 −→ LB

2 , where LB
2 and LA

1 denote the set of fuzzy subsets g : B →
L2 and f : A → L1, respectively, and are defined, for all g ∈ LB

2 , f ∈ LA
1 and

a ∈ A, b ∈ B, as:

g↑IQ(a) =
∨

X∈P(B)

(∧
b∈X

R(a, b) ↙σ(a,b) g(b)

)
↙ µa

B(X) (12)

f↓IQ

(b) =
∨

Y ∈P(A)

(∧
a∈Y

R(a, b) ↖σ(a,b) f(a)

)
↖ µb

A(Y ) (13)

As in the conjunctive case, Corollary 9 provides the following characteriza-
tion of the implicative quantified concept-forming operators, where the invariant
with respect to the cardinality fuzzy measures µb

A and µa
B are associated with the

fuzzy sets φb
A : {1, . . . ,m} → [0, 1] and φa

B : {1, . . . , n} → [0, 1], where |A| = m
and |B| = n.

Proposition 18. In the framework of Definition 17, the quantified concept-
forming operators ↑IQ : LB

2 −→ LA
1 and ↓IQ

: LA
1 −→ LB

2 , satisfy:

g↑IQ(a) =

n∧
i=1

(
R(a, bπa(i)) ↙σ(a,bπa(i)) g(bπa(i))

)
↙ φa

B(i/n) (14)

f↓IQ

(b) =

m∧
j=1

(
R(aλb(j), b) ↖σ(aλb(j)

,b) f(aλb(j))
)
↖ φb

A(j/m) (15)

for all g ∈ LB
2 , f ∈ LA

1 and a ∈ A, b ∈ B, where πa and λb are permutations
such as:

R(a, bπa(i)) ↙σ(a,bπa(i)) g(bπa(i)) ≤ R(a, bπa(i+1)) ↙σ(a,bπa(i+1)) g(bπa(i+1))

R(aλb(j), b) ↖σ(aλb(j)
,b) f(aλb(j)) ≤ R(aλb(j+1), b) ↖σ(aλb(j+1),b) f(aλb(j+1))

Proof. The equalities clearly hold by Definition 17 and Corollary 9.

As a consequence, Definition 17 provides a new quantified version of the
concept-forming operators, which reduces the existential character of the orig-
inal ones using, in this case, the implicative type. Although the conjunctive
and implicative quantified concept-forming operators are different and provide
different results, in general, they can coincide in some particular cases. For
example, from Proposition 18, we can easily show that the consideration of the
measures µa

B : P(B) → [0, 1], µb
A : P(A) → [0, 1] defined as

µa
B(X) =

{
0 if X = ∅ or X = {b}, with b ∈ B

1 otherwise

µb
A(Y ) =

{
0 if Y = ∅ or Y = {a}, with a ∈ A

1 otherwise
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for all a ∈ A, b ∈ B, X ∈ P(B), Y ∈ P(A), also corresponds to remove the
worst case, that is, the smallest value of the computation: R(a, bπ(1)) ↙σ(a,bπ(1))

g(bπ(1)) and R(aλ(1), b) ↖σ(aλ(1),b) f(aλ(1)), respectively. Notice that fuzzy sets

φb
A and φa

B associated with these measures are defined as

φb
A(j/m) =

{
0 if j = 1

1 otherwise

φa
B(i/n) =

{
0 if i = 1

1 otherwise

for all a ∈ A, b ∈ B, j ∈ {1, . . . ,m}, i ∈ {1, . . . , n}, with |A| = m and |B| = n.
We will consider this case to illustrate the characterization of the implicative

quantified concept-forming operators given in Proposition 18 in the following
example.

Example 19. Given the multi-adjoint frame and context of Example 16, we
will consider the same fuzzy sets g, and the fuzzy set φa

B and φb
A defined as:

φa
B(i/3) =

{
1 if i = 1

0 otherwise

φb
A(j/4) =

{
1 if j = 1

0 otherwise

In addition, the implications ↙P and ↖P associated with the product con-
junctor &P will be the implications ↙ and ↖, respectively, used in Proposi-
tion 18. Notice that, ↙P=↖P since the product conjunctor is commutative.
For more details, see [16].

Since the same context and mappings have been considered, now the per-
mutations are the opposite of the ones considered in Example 16. Hence, the
permutations πa1 , πa2 , πa3 , πa4 : {1, 2, 3} → {1, 2, 3} are defined as follows:

πa1
(i) =


3 if i = 1

1 if i = 2

2 if i = 3

πa2(i) = πa3(i) = πa4(i) =


1 if i = 1

3 if i = 2

2 if i = 3

Therefore, the conditions required in Proposition 18 are fullfilled and we
can apply the characterization of the implicative quantified concept-forming

19



operators. Specifically, we have that:

g↑IQ(a1) =

3∧
i=1

(
R(a1, bπa1

(i)) ↙σ(a1,bπa1 (i)) g(bπa1 (i))
)
↙P φa1

B (i/3)

= inf{
(
0.75 ↙G 1

)
↙P 0,

(
0.75 ↙G 0.5

)
↙P 1,

(
1 ↙G 0.5

)
↙P 1}

= inf{0.75 ↙P 0, 1 ↙P 1, 1 ↙P 1} = inf{1, 1, 1} = 1

g↑IQ(a2) =

3∧
i=1

(
R(a2, bπa2

(i)) ↙σ(a2,bπa2
(i)) g(bπa2

(i))
)
↙P φa2

B (i/3)

= inf{
(
0.25 ↙G 0.5

)
↙P 0,

(
0.75 ↙G 1

)
↙P 1,

(
0.5 ↙G 0.5

)
↙P 1}

= inf{0.25 ↙P 0, 0.75 ↙P 1, 1 ↙P 1} = inf{1, 0.75, 1} = 0.75

g↑IQ(a3) =

3∧
i=1

(
R(a3, bπa3

(i)) ↙σ(a3,bπa3 (i)) g(bπa3 (i))
)
↙P φa3

B (i/3)

= inf{
(
0.25 ↙G 0.5

)
↙P 0,

(
0.5 ↙G 1

)
↙P 1,

(
0.5 ↙G 0.5

)
↙P 1}

= inf{0.25 ↙P 0, 0.5 ↙P 1, 1 ↙P 1} = inf{1, 0.5, 1} = 0.5

g↑IQ(a4) =

3∧
i=1

(
R(a4, bπa4

(i)) ↙σ(a4,bπa4
(i)) g(bπa4

(i))
)
↙P φa4

B (i/3)

= inf{
(
0 ↙L 0.5

)
↙P 0,

(
1 ↙L 1

)
↙P 1,

(
0.75 ↙L 0.5

)
↙P 1}

= inf{0.5 ↙P 0, 1 ↙P 1, 1 ↙P 1} = inf{1, 1, 1} = 1

Notice that g↑IQ = (a1/1, a2/0.75, a3/0.5, a4/1) coincides with g↑QB computed in

Example 16, as we previously observed. Now, we show that f↓IQ

(b) also is equal

to f↓AQ

(b) (computed in Example 16). For that purpose, we consider the fuzzy
set f given in Example 16 and the opposite permutations λb1 , λb2 , λb3 : {1, 2, 3, 4} →
{1, 2, 3, 4}, that is:

λb1(j) =


4 if j = 1

2 if j = 2

3 if j = 3

1 if j = 4

λb2(j) =


2 if j = 1

4 if j = 2

3 if j = 3

1 if j = 4

λb3(j) =


1 if j = 1

4 if j = 2

3 if j = 3

2 if j = 4

Fixed b ∈ B, it can be checked in an easy way that the next inequality

R(aλb(j), b) ↖σ(aλb(j)
,b) f(aλb(j)) ≤ R(aλb(j+1), b) ↖σ(aλb(j+1),b) f(aλb(j+1))
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holds, for all a ∈ A and j ∈ {1, 2, 3}. Hence, applying Proposition 18, we obtain:

f↓IQ

(b1) =

4∧
j=1

(
R(aλb1

(j), b1) ↖σ(aλb1
(j),b1) f(aλb1

(j))
)
↖P φb1

A (j/4)

= inf{(0 ↖L 1) ↖P 0, (0.25 ↖G 0.75) ↖P 1, (0.25 ↖G 0.5) ↖P 1, (0.75 ↖G 1) ↖P 1}
= inf{0 ↖P 0, 0.25 ↖P 1, 0.25 ↖P 1, 0.75 ↖P 1}
= inf{1, 0.25, 0.25, 0.75} = 0.25

f↓IQ

(b2) =

4∧
j=1

(
R(aλb2

(j), b2) ↖σ(aλb2
(j),b2) f(aλb2

(j))
)
↖P φb2

A (j/4)

= inf{(0.5 ↖G 0.75) ↖P 0, (0.75 ↖L 1) ↖P 1, (0.5 ↖G 0.5) ↖P 1, (1 ↖G 1) ↖P 1}
= inf{0.5 ↖P 0, 0.75 ↖P 1, 1 ↖P 1, 1 ↖P 1}
= inf{1, 0.75, 1, 1} = 0.75

f↓IQ

(b3) =

4∧
j=1

(
R(aλb3

(j), b3) ↖σ(aλb3
(j),b3) f(aλb3

(j))
)
↖P φb3

A (j/4)

= inf{(0.75 ↖G 1) ↖P 0, (1 ↖L 1) ↖P 1, (0.5 ↖G 0.5) ↖P 1, (0.75 ↖G 0.75) ↖P 1}
= inf{0.75 ↖P 0, 1 ↖P 1, 1 ↖P 1, 1 ↖P 1}
= inf{1, 1, 1, 1} = 1

Thus, f↓IQ

= (b1/0.25, b2/0.75, b3/1), which is equal to f↓AQ

, computed in Ex-
ample 16. As we mentioned previously, in general, both quantified concept-
forming operators are different and provide different point of views. □

The following section relates the implicative quantified concept-forming op-
erators with a well-know framework, which has been used in the reduction pro-
cedure of concept lattice.

4.1. Comparison with threshold concept lattices

In the literature there exists a philosophy, whose concept forming operators
have a similar syntax to the ones given here with implicative generalized quan-
tifiers. Variable threshold concept lattices [7, 19, 45] consider a threshold for
normalizing the concept-forming operators used in different fuzzy concept lat-
tice frameworks [19]. This section will recall the definitions given in [19] on the
unit interval and will show a comparison with the definitions introduced above.

Definition 20 ([19]). Given two thresholds δ1, δ2 ∈ [0, 1], the threshold concept-

forming operators ↑δ2 : LB −→ LA and ↓δ1
: LA −→ LB , are defined as following

g↑δ2 (a) =
∧
b∈B

(
R(a, b) ↙σ(a,b) g(b)

)
↙ δ2 (16)

f↓δ1
(b) =

∧
a∈A

(
R(a, b) ↖σ(a,b) f(a)

)
↖ δ1 (17)

for all g ∈ LB , f ∈ LA and a ∈ A, b ∈ B.
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Other combinations of the implications ↙ and ↖ were also studied in [19]
and, as a conclusion, the authors proved that the case given above has better
properties and so, it is the most suitable to be considered. The following result
shows the relationship with operators given in Definition 17.

Proposition 21. In the framework of Definition 17, given δ1, δ2 ∈ [0, 1], the
fuzzy measures

µa,δ2
B (X) =


1 if X = B

0 if X = ∅
δ2 otherwise

µb,δ1
A (Y ) =


1 if Y = A

0 if Y = ∅
δ1 otherwise

and the fuzzy sets g ∈ LB, f ∈ LA. If the following inequalities hold for all
a ∈ A, b ∈ B,(
R(a, bπa(1)) ↙σ(a,bπa(1)) g(bπa(1))

)
↙ δ2 ≤ R(a, bπa(n)) ↙σ(a,bπa(n)) g(bπa(n))(

R(aλb(1), b) ↖σ(aλb(1)
,b) f(aλb(1))

)
↖ δ1 ≤ R(aλb(m), b) ↖σb(aλb(m),b) f(aλb(m))

were πa and λb are permutations satisfying:

R(a, bπa(i)) ↙σ(a,bπa(i)) g(bπa(i)) ≤ R(a, bπa(i+1)) ↙σ(a,bπa(i+1)) g(bπa(i+1))

R(aλb(j), b) ↖σ(aλb(j)
,b) f(aλb(j)) ≤ R(aλb(j+1), b) ↖σ(aλb(j+1),b) f(aλb(j+1))

then we obtain that
g↑IQ = g↑δ2 f↓IQ

= f↓δ1

Proof. Given g ∈ LB
2 , we will prove the first equality. The other one holds

similarly. Since ↙ is increasing in the consequent, by the definition of πa, we
have that(
R(a, bπa(1)) ↙σ(a,bπa(1)) g(bπ(1))

)
↙ δ2 ≤

(
R(a, bπa(i)) ↙σ(a,bπa(i)) g(bπa(i))

)
↙ δ2

(18)
for all i ∈ {1, . . . , n}. Moreover, the mapping φa

B associated with the fuzzy

measure µa,δ2
B satisfies that φa

B(1) = 1 and φa
B(i/n) = δ2, for all i ∈ {1, . . . , n−

1}. Therefore, for every a ∈ A we have

g↑IQ(a) =

n∧
i=1

(
R(a, bπa(i)) ↙σ(a,bπa(i)) g(bπa(i))

)
↙ φa

B(i/n)

=

(
n−1∧
i=1

(
R(a, bπa(i)) ↙σ(a,bπa(i)) g(bπa(i))

)
↙ δ2

)∧(
R(a, bπa(n)) ↙σ(a,bπa(n)) g(bπa(n))

)
(1)
=

(
R(a, bπa(1)) ↙σ(a,bπa(1)) g(bπa(1))

)
↙ δ2

∧(
R(a, bπa(n)) ↙σ(a,bπa(n)) g(bπa(n))

)
(2)
=

(
R(a, bπa(1)) ↙σ(a,bπa(1)) g(bπa(1))

)
↙ δ2

(3)
=

∧
b∈B

(
R(a, b) ↙σ(a,b) g(b)

)
↙ δ2

= g↑δ2 (a)
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where (1) holds by Equation (18), (2) by hypothesis and (3) by the definition
of πa and Equation (18). □

This result and the definitions of ↑δ2 and ↓δ1
displays and justifies the possi-

bility of considering in the definition of generalized quantifiers non-normalized
measures, that is, we can take into account increasing mappings τ : P(U) →
[0, 1], with τ(∅) = 0 and invariant with respect to the cardinality, without
the requirement that τ(U) = 1. Clearly, these mappings are also bounded by
the maximum fuzzy measure, i.e. τ ≤ µ∃. In that case, we can consider the
mappings

τa,δ2B (X) =

{
0 if X = ∅
δ2 otherwise

τ b,δ1A (D) =

{
0 if Y = ∅
δ1 otherwise

and Proposition 21 is rewriting as follows.

Proposition 22. In the framework of Definition 17, considering the mappings
τa,δ2B and τ b,δ1A , we have that

g↑IQ = g↑δ2 f↓IQ

= f↓δ1

for all g ∈ LB
2 , f ∈ LA

1 .

Proof. The proof follows similarly to the one given to Proposition 21 taking
into account that in this case the mappings τa,δ2B and τ b,δ1A are equal to δ2 and
δ1 on B and A, respectively, instead of 1. □

Therefore the threshold concept-forming operators can be seen as partic-
ular cases of implicative quantifier concept-forming operators. This fact also
highlights the relevance of the new operators considered in this paper.

4.2. Properties of quantifier formal-concept operators

The first property we highlight is the monotonicity of both, the conjunctive
and implicative quantified concept-forming operators. Since & is monotonic,
then the conjunctive quantified concept-forming operators clearly are mono-
tonic. Moreover, due to the implicative quantifiers evaluate the fuzzy set on
the consequent and the implication is increasing in this argument, then the
implicative quantified concept-forming operators also are monotonic.

The following result shows that the pair ↑QA and ↓QB form an antitone Galois
connection, when the minimum fuzzy measure µ∀ is considered.

Proposition 23. Given the quantifiers ∀
AQ and Q∀

B determined by the minimum

fuzzy measure µ∀ on the universes A and B, respectively, then the pair (
↑
Q∀

B ,
↑∀
A
Q)

is an antitone Galois connection.
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Proof. The proof holds because the universal quantifier provides the original

definitions of the concept-forming operators, that is,
↑
Q∀

B = ↑ and
↑∀
A
Q = ↓.

Due to the permutations πa and λb in Definition 14, we obtain that R(a, bπa(n)) ↙σ(a,bπa(n))

g(bπa(n)) and R(aλb(m), b) ↖σ(aλb(m),b) f(aλb(m)) are the least elements of the
sets

{R(a, b) ↙σ(a,b) g(b) | b ∈ B}
{R(a, b) ↖σ(a,b) f(a) | a ∈ A}

respectively. Therefore,
↑
Q∀

B = ↑ and
↑∀
A
Q = ↓. □

Notice also that the pair (↑δ2 , ↓
δ1

) is not a Galois connection in general.

In [19], different properties of ↑δ2 and ↓δ1
were studied, where diverse ones were

focused on providing sufficient conditions to ensure that ↑δ2 and ↓δ1
form a

Galois connection. For example, when δ1 = δ2 and the conjunctor operators

are associative, then we can assert that (↑δ1 , ↓
δ1

) is a Galois connection. For
instance, these hypotheses hold in the variable threshold frameworks considered
in [7, 45], in which residuated lattices are considered.

Hence, clearly, in the framework of Proposition 22, the pair (↑IQ , ↓
IQ

) is a
Galois connection. The following example shows that this fact does not hold
when the fuzzy measures considered in Proposition 21 are considered.

Example 24. Given the frame ([0, 1],&G), where &G is the Gödel t-norm, the
context (A,B,R, σ), where A = {a1, a2}, B = {b1, b2}, R is defined in Table 2
and σ is constantly &G, and the mappings g : B → [0, 1], f : A → [0, 1], defined
as g(b1) = 0.8, g(b2) = 0.8, f(a1) = 1, f(a2) = 0.8.

Table 2: Relation R of the context of Example 24.

R b1 b2

a1 0.4 1
a2 0.7 0.8

Moreover, we consider the following fuzzy measures

µa,0.4
B (X) =


1 if X = B

0 if X = ∅
0.4 otherwise

µb,0.4
A (Y ) =


1 if Y = A

0 if Y = ∅
0.4 otherwise

for all a ∈ A and b ∈ B. We will prove that the adjoint property does not hold
in this case, that is, we will see that f ≤ g↑IQ , but g ̸≤ f↓IQ

.
Since R(a1, b1) ↙G g(b1) = 0.4 ↙G 0.8 = 0.4, and R(a1, b2) ↙G g(b2) =

1 ↙G 0.9 = 1, we have that

g↑IQ(a1) = inf{0.4 ↙G 0.4, 1 ↙G 1} = 1
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Analogously, we obtain that

g↑IQ(a2) = inf{0.7 ↙G 0.4, 0.8 ↙G 1} = 0.8

Hence, f ≤ g↑IQ . On the other hand, we have

f↓IQ

(b1) = {0.4 ↖G 0.4, 0.7 ↖G 1} = 0.7

f↓IQ

(b2) = {1 ↖G 0.4, 1 ↖G 1} = 1

Thus, g ̸≤ f↓IQ

.

Example 16 provides a pair of conjunctive quantified concept-forming oper-
ators, which does not form a Galois connection. In this example, we have that

g = (b1/0.5, b2/0.5, b3/1) ̸≤ (b1/0.25, b2/0.5, b3/1) = g↑AQ↓AQ

.
Hence, as a consequence, in general the quantifiers concept-forming operators

do not form a Galois connection. The following example shows an example of
Galois connections.

Example 25. Considering the context in Example 24 and the fuzzy measures

µa,0.8
B (X) =


1 if X = B

0 if X = ∅
0.8 otherwise

µb,0.8
A (Y ) =


1 if Y = A

0 if Y = ∅
0.8 otherwise

for all a ∈ A and b ∈ B. The pair (↑IQ , ↓
IQ

) is a Galois connection and it has
three concepts:

CIQ
0 = ((b1/0.4, b2/1), (a1/1, a2/1))

CIQ
1 = ((b1/0.7, b2/1), (a1/0.4, a2/1))

CIQ
2 = ((b1/1, b2/1), (a1/0.4, a2/0.7))

where each mapping is represented by an ordered pair. The Hasse diagram of
the obtained concept lattice is on the left side of Figure 1.

Notice the difference from the usual concept lattice. Considering the non-
quantified concept-forming operators we have the lattice in the right side of
Figure 1 and the obtained concepts are the following:

C0 = ((b1/0.4, b2/0.8), (a1/1, a2/1))

C1 = ((b1/0.4, b2/1), (a1/1, a2/0.8))

C2 = ((b1/0.7, b2/0.8), (a1/0.4, a2/1))

C3 = ((b1/0.7, b2/1), (a1/0.4, a2/0.8))

C4 = ((b1/1, b2/1), (a1/0.4, a2/0.7))

Thus, these quantifiers provide concept-forming operators similar to the ones
considered in the threshold concept lattices, which offer a reduction of the orig-
inal concept lattice. □

More properties of the new conjunctive and implicative quantified concept-
forming operators will be studied in the future.
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CIQ
0

CIQ
1

CIQ
2

C0

C1 C2

C3

C4

Figure 1: Concept lattices of Example 24.

5. Conclusions and future work

Four generalized quantifiers have been defined, two conjunctive and two
implicative ones, which generalize the monadic quantifiers of type ⟨1⟩ deter-
mined by fuzzy measures introduced in [13, 43]. We have proven they also
have the universal and existencial quantifiers as particular cases. Moreover,
efficient characterizations have been obtained in order to simplify the original
definitions. These quantifiers have been applied to obtain quantified concept-
forming operators. From the four definitions 16 different possibilities of defining
the concept-forming operators exist, this paper has considered one conjunctive
and one implicative. However, any combination can be considered and similar
properties can be obtained.

We have also proven that the implicative quantified concept-forming opera-
tors generalize the operators given in the threshold concept lattices [7, 19, 45],
which highlights the interest of these operators and shows a possible interpre-
tation. Furthermore, different examples have been introduced. For instance,
we have presented a particular case which absorbs some possible noise in the
data removing the smallest value in the computations of the concept-forming
operators and so, decreasing the impact of the infimum operator and consid-
ering the second smallest value. Finally, we have shown different preliminary
properties, which will be increased in the future. Moreover, new definitions will
be studied in order to provide Galois connections preserving the flexibility of
the generalized quantifiers. In addition, these new operators will be applied to
particular real cases, such as in renewable energy and digital forensic datasets.
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[33] S. Krajči. A generalized concept lattice. Logic Journal of IGPL, 13(5):543–
550, 2005.
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