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Abstract

Formal concept analysis (FCA) is a useful mathematical tool for obtaining
information from relational datasets. One of the most interesting research
goals in FCA is the selection of the most representative variables of the
dataset, which is called attribute reduction. Recently, the attribute reduc-
tion mechanism has been complemented with the use of local congruences
in order to obtain robust clusters of concepts, which form convex sublattices
of the original concept lattice. Since the application of such local congru-
ences modifies the quotient set associated with the attribute reduction, it
is fundamental to know how the original context (attributes, objects and
relationship) has been modified in order to understand the impact of the
application of the local congruence in the attribute reduction.

Keywords: Formal concept analysis, size concept lattice reduction,
congruence relation

1. Introduction

The variable selection problem is a hot topic in many areas dedicated to
data analysis. On many occasions, making a correct selection of the consid-
ered variables facilitates the management of the information in a consider-
able way, but it can also lead to certain changes in the provided information
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that must be analyzed in order to control them. This is one of the most
appealing research lines within the theory of formal concept analysis.

Formal Concept Analysis (FCA) [15] is a mathematical theory to orga-
nize and analyze the information collected in a dataset, by means of the
mathematical structure called concept lattice. Since its introduction [15],
several mechanisms for variable selection have been intensively studied. One
of the most researched lines deals with the reduction of the number of at-
tributes, detecting the unnecessary ones and preserving the most important
information of the considered formal context [1, 3, 9, 10, 11, 12, 16, 17, 18,
19].

In [7, 8], the authors proved that any attribute reduction of a formal
context induces an equivalence relation on the set of concepts of the con-
cept lattice. Moreover, the equivalence classes of the induced equivalence
relation have the structure of a join-semilattice. This fact gave rise to the
introduction of the definition of a new equivalence relation whose main goal
was to lightly modify the equivalence relation induced by the attribute re-
duction, in order to provide new more robust equivalence classes grounded
on the structure of convex sublattices. This new equivalence relation was
called local congruence and the application to attribute reduction in FCA
was initiated in [5, 6].

In addition,[4] studied that when the induced equivalence relation pro-
vided by an attribute reduction does not coincide with a local congruence,
then the fact of using a local congruence to complement such a reduction
had an influence on the original reduction.

In this paper, we continue with the idea highlighted in [4] of studying
the impact of local congruences on concept lattices corresponding to formal
contexts that have been previously reduced deleting a set of (unnecessary)
attributes (attribute reduction). For that, a new partial ordering on the
quotient set provided by a local congruence is introduced and analyzed.
Moreover, the structures associated with the reduced context and the quo-
tient set of concepts given by an attribute reduction have been compared
in order to highlight the narrow relationship between them, which will be
fundamental for simplifying and proving the rest of results of the paper.

Since the main transformation that a local congruence makes on the
quotient set associated with the attribute reduction is to group different
classes, this paper studies how the reduced context (attributes, objects and
the relationship) needs to be modified (as less as possible) in order to ob-
tain a complete lattice isomorphic to the one obtained after the grouping
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given by the local congruence. This study will be split into three differ-
ent cases depending on the character of the element grouped by the local
congruence, specifically, if it is join-irreducible, meet-irreducible or neither
join nor meet-irreducible. Furthermore, due to the modification of the orig-
inal context from the attribute reduction mechanism is well known, we can
assert that this paper determines the precise modifications of an attribute
reduction mechanism complemented by a local congruence makes on the
original context. Hence, this study is fundamental for the traceability and
knowledge of the information obtained from the proposed methodology for
variable selection from datasets.

The paper is organized as follows: Section 2 recalls some necessary no-
tions and results needed in the development of the contributions of the
paper. In Section 3, we carried out the relationship between the reduced
concept lattice and the quotient set associated with the attribute reduction.
Moreover, it is defined and studied an ordering defined on the quotient set
associated with a local congruence. The results obtained in Section 3 have
led us to develop the analysis shown in the Section 4, which is divided
in two parts: the first one devoted to study the impact of eliminating a
join-irreducible element of a concept lattice and the second one devoted to
analyze the repercussion of eliminating other kind of elements. Section 5
summarizes the conclusions and prospect for future works.

2. Preliminaries

In this section, some preliminary notions and results used in this work
will be recalled. In order to make this paper as self-contained as possible,
the preliminary section is divided into three parts, the first one will be
devoted to recall those necessary notions of FCA, the second one to those
related to lattice theory and the last one to local congruences.

2.1. Formal concept analysis

In FCA a context is a triple (A,B,R) where A is a set of attributes, B
is a set of objects and R ⊆ A × B is a relationship, such that (a, x) ∈ R
(also denoted as aRx), if the object x ∈ B possesses the attribute a ∈ A.
In addition, we call derivation operators to the mappings ↑ : 2B → 2A and
↓ : 2A → 2B defined for each X ⊆ B and Y ⊆ A as:

X↑ = {a ∈ A | for all x ∈ X, aRx} (1)

Y ↓ = {x ∈ B | for all a ∈ Y, aRx} (2)
3



Taking into account the previous mappings, a concept is a pair (X, Y ), with
X ⊆ B and Y ⊆ A satisfying that X↑ = Y and Y ↓ = X. The subset X
is called the extent of the concept and the subset Y is called the intent.
The set of extents and intents are denoted by E(A,B,R) and I(A,B,R),
respectively.

The whole set of concepts is denoted as C(A,B,R). The inclusion or-
dering on the left argument, ≤, provides C(A,B,R) with the structure of a
complete lattice, which is called concept lattice of the context (A,B,R).

Furthermore, we need to recall the notion of meet(join)-irreducible ele-
ment of a lattice.

Definition 1. Given a lattice (L,⪯), such that ∧ is the meet operator,
and an element x ∈ L verifying

1. If L has a top element ⊤, then x ̸= ⊤.

2. If x = y ∧ z, then x = y or x = z, for all y, z ∈ L.

we call x meet-irreducible (∧-irreducible) element of L. Condition (2) is
equivalent to

2′. If x < y and x < z, then x < y ∧ z, for all y, z ∈ L.

The join-irreducible (∨-irreducible) element of L is defined dually.

In addition, we will say that an attribute-concept is a concept generated
by an attribute a ∈ A, that is (a↓, a↓↑). Dually, an object-concept is defined
as (b↑↓, b↑) for b ∈ B. Moreover, the sets of objects and attributes that
generates a concept are defined.

Definition 2. Given a formal context (A,B,R), the associated concept
lattice C(A,B,R) and a concept C ∈ C(A,B,R), the set of objects generat-
ing C is defined as the set:

Obg(C) = {b ∈ B | (b↑↓, b↑) = C}

Similarly, the set of attributes generating C is defined as the set:

Atg(C) = {a ∈ A | (a↓, a↓↑) = C}

In addition, the sets Obg(C) and Atg(C) are always nonempty sets, for
every join-irreducible and meet-irreducible concept C [12], respectively.
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Proposition 3. If C is a join-irreducible concept of C(A,B,R), then Obg(C)
is a nonempty set. Equivalently, if C is a meet-irreducible concept of C(A,B,R),
then Atg(C) is a nonempty set.

Proof. The result straightforwardly arises from definition.

With respect to the reduction of the context in FCA, from the perspec-
tive of the set of objects, the classification of the objects based on the sets
given in Definition 2, is given below. This result is dual to the one given
for the set of attributes in [12]. For a more detailed information about the
notions considered in the this result we refer the reader to [12].

Theorem 4. Given an object b ∈ B, we have that

• b is an absolutely necessary object if and only if there exists a join-
irreducible concept C of (M,⪯), satisfying that b ∈ Obg(C) and
card(Obg(C)) = 1.

• b is a relatively necessary object if and only if b is not an absolutely
necessary object and there exists a join-irreducible concept C with b ∈
Obg(C) and card(Obg(C)) > 1, satisfying that

(
B\Obg(C)

)
∪ {B} is

a consistent set.

• b is an absolutely unnecessary object if and only if, for any join-
irreducible concept C, b /∈ Obg(C), or if b ∈ Obg(C) then

(
B\Obg(C)

)
∪

{b} is not a consistent set.

In addition, it is important to recall that when we reduce the set of
attributes in a context, an equivalence relation on the set of concepts of the
original concept lattice is induced. The following proposition was proved
in [7] for the classical setting of FCA.

Proposition 5 ([7]). Given a context (A,B,R) and a subset D ⊆ A. The
set ρD = {((X1, Y1), (X2, Y2)) | (X1, Y1), (X2, Y2) ∈ C(A,B,R), X↑D↓

1 =
X↑D↓

2 } is an equivalence relation, where ↑D denotes the concept-forming op-
erator X↑D = {a ∈ D | (a, x) ∈ R, for all x ∈ X} restricted to the subset of
attributes D ⊆ A.

Notice that ↑D and ↓D , respectively defined as above and as Y ↓D = {b ∈
B | (y, b) ∈ R, for all y ∈ Y }, for all Y ⊆ D, are the concept-forming
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operators of the reduced concept lattice. Notice that, since the set of object
B is not modified, we have that Y ↓D = Y ↓, for all Y ⊆ D.

In [7], the authors also proved that each equivalence class of the in-
duced equivalence relation has a structure of join semilattice and they also
characterized the maximum element.

Proposition 6 ([7]). Given a context (A,B,R), a subset D ⊆ A and a
class [(X, Y )]D of the quotient set C(A,B,R)/ρD. The class [(X, Y )]D is a
join semilattice with maximum element (X↑D↓, X↑D↓↑).

2.2. Lattice theory

In this paper, we will also make use of some well-known notions of
lattice theory which are recalled below. The first notion is about the chain
conditions on lattices.

Definition 7 ([13]). Let (L,⪯) be a lattice. L is said to satisfy the
ascending chain condition, denoted as ACC, if given any sequence x1 ⪯
x2 ⪯ · · · ⪯ xn ⪯ . . . of elements of L, there exists k ∈ N such that
xk = xk+1 = . . . . The dual of the ascending chain condition is the descend-
ing chain condition, denoted as DCC.

The following result relates the chain conditions to the completeness of
a lattice.

Theorem 8 ([13]). Let (L,⪯) be a lattice.

(i) If L satisfies ACC, then for every non-empty subset A ⊆ L there exists
a finite subset F ⊆ A such that

∨
A =

∨
F .

(ii) If L has a bottom element and satisfies ACC, then L is complete.

(iii) If L has no infinite chain, then L is complete.

On the other hand, an ordered set can be embedded in a complete lattice
by using the Dedekind-MacNeille completion, which is associated with the
Galois connection ( u, l), recalled in the following definition.

Definition 9 ([13]). Let (P,≤) be an ordered set. TheDedekind-MacNeille
completion of P is defined as

DM(P ) = {A ⊆ P | Aul = A}
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where the mappings u : 2P → 2P and l : 2P → 2P are defined for a subset
A ⊆ P as

Au = {x ∈ P | a ≤ x, for all a ∈ A}
Al = {x ∈ P | x ≤ a, for all a ∈ A}

The ordered set (DM(P ),⊆) is a complete lattice.

In addition, we can use the Dedekind-MacNeille completion to construct
a complete lattice from the join-irreducible and meet-irreducible elements
of a complete lattice as the following result states.

Theorem 10 ([13]). Let (L,⪯) be a lattice with no infinite chains. Then

L ∼= DM(J (L) ∪M(L))

where J (L) and M(L) are the sets of join-irreducible and meet-irreducible
elements of L, respectively. Moreover, J (L) ∪M(L) is the smallest subset
of L which is both join-dense and meet-dense in L.

2.3. Local congruences

The notion of local congruence arose with the goal of complementing
attribute reduction in FCA. The purpose of local congruences is to obtain
equivalence relations less-constraining than congruences [6] and with useful
properties to be applied in size reduction processes of concept lattices. We
recall the notion of local congruence next.

Definition 11. Given a lattice (L,⪯), we say that an equivalence rela-
tion δ on L is a local congruence if each equivalence class of δ is a convex
sublattice of L.

The notion of local congruence in terms of the equivalence relation is
given as follows.

Proposition 12 ([6]). Given a lattice (L,⪯) and an equivalence relation
δ on L, the relation δ is a local congruence on L if and only if, for each
a, b, c ∈ L, the following properties hold:

(i) If (a, b) ∈ δ and a ⪯ c ⪯ b, then (a, c) ∈ δ.

(ii) (a, b) ∈ δ if and only if (a ∧ b, a ∨ b) ∈ δ.
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Usually, we will look for a local congruence that contains a partition
induced by an equivalence relation. When we say that a local congruence
contain a partition provided by an equivalence relation, we are making use
of the following definition of inclusion ordering of equivalence relations.

Definition 13. Let ρ1 and ρ2 be two equivalence relations on a lattice
(L,⪯). We say that the equivalence relation ρ1 is included in ρ2, denoted as
ρ1 ⊑ ρ2, if for every equivalence class [x]ρ1 ∈ L/ρ1 there exists an equivalence
class [y]ρ2 ∈ L/ρ2 such that [x]ρ1 ⊆ [y]ρ2 .

Once we have recalled the previous notions and results, next section will
investigate the impact of local congruences on concept lattices when the
considered concept lattices are associated with reduced contexts.

3. Attribute reduction quotient sets and local congruences

This section will begin showing, in an attribute reduction process, the
narrow relationship between the quotient set associated with the attribute
reduction (Proposition 5) and the reduced concept lattice. Then, an or-
dering relation will be defined and studied on the quotient set associated
with a local congruence, which will be fundamental for the main goal of this
paper.

3.1. Attribute reduction: quotient set versus reduced concept lattice

Since the equivalence classes induced by an attribute reduction are join-
semilattices with maximum elements, for every equivalence class [C]D, with
C = (X, Y ) ∈ C(A,B,R), the concept CM = (XM , YM) =

∨
Ci∈[C]D

Ci nec-

essarily belongs to [C]D. Indeed, by Proposition 6, this maximum element
is (X↑D↓, X↑D↓↑) and so, XM = X↑D↓, which implies that this extent is
also the extent of a concept of the reduced concept lattice C(D,B,R|D×B).
Moreover, the least element of C(D,B,R|D×B) is (∅↑D↓,∅↑D), which cor-
respond to the concept (∅↑D↓,∅↑D↓↑) of the original context. Notice that
C(D,B,R|D×B) is a complete lattice and so, a join closed structure with a
least element.

On the other hand, on the whole set of equivalence classes given by the
relation ρD an ordering can be defined.

Proposition 14. On the quotient set C(A,B,R)/ρD associated with a con-
text (A,B,R), the relation ⊑D, defined as [(X1, Y1)]D ⊑D [(X2, Y2)]D if
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X1
↑D↓ ⊆ X2

↑D↓, for all [(X1, Y1)]D, [(X2, Y2)]D ∈ C(A,B,R)/ρD, is an or-
dering relation.

Proof. By Proposition 6, ⊑D is well defined. Moreover, from its definition,
⊑D is straightforwardly reflexive, antisymmetric and transitive. □

The following result shows the narrow relationship between the previ-
ously shown quotient set and the reduced concept lattice, which improves
Proposition 3.11 in [7].

Theorem 15. Given a context (A,B,R) and a subset of attributes D ⊆ A,
we have that the quotient set given by ρD and the reduced concept lattice by
D are isomorphic, that is

(C(A,B,R)/ρD,⊑D) ∼= (C(D,B,R|D×B),≤D)

where ≤D is the ordering in the original concept lattice restricted to the
reduced one.

Proof. We will define two mappings φ : C(A,B,R)/ρD → C(D,B,R|D×B)
and ψ : C(D,B,R|D×B) → C(A,B,R)/ρD, and we will prove that they pre-
serve the ordering and that φ ◦ ψ and ψ ◦ φ are the corresponding identity
mappings.

The mapping φ will be defined as φ([(X, Y )]D) = (X↑D↓, X↑D) for all
[(X, Y )]D ∈ C(A,B,R)/ρD, and ψ is defined as ψ(X, Y ) = [(X,X↑)]D for
all (X, Y ) ∈ C(D,B,R|D×B). φ is clearly well defined and ψ is also well
defined by Proposition 6.

Given (X, Y ) ∈ C(D,B,R|D×B), we have that

φ ◦ ψ(X, Y ) = φ(ψ(X, Y )) = φ([(X,X↑)]D) = (X↑D↓, X↑D) = (X, Y )

where the last equality holds because (X, Y ) is a concept of the reduced
concept lattice and so, it satisfies X↑D↓ = X↑D↓D = X.

In the other composition, we consider [(X, Y )]D ∈ C(A,B,R)/ρD and
we obtain

ψ ◦ φ([(X, Y )]D) = ψ(φ([(X, Y )]D)) = ψ(X↑D↓, X↑D) = [(X↑D↓, X↑D↓↑)]D

and the last equivalence class is exactly equal to [(X, Y )]D, by Proposition 6.
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Finally, we will prove that φ and ψ are order-preserving. Given [(X1, Y1)]D,
[(X2, Y2)]D ∈ C(A,B,R)/ρD, such that [(X1, Y1)]D ⊑D [(X2, Y2)]D, we have
that X1

↑D↓ ⊆ X2
↑D↓ by definition of ⊑D and consequently we have that

φ([(X1, Y1)]D) = (X1
↑D↓, X1

↑D) ≤D (X2
↑D↓, X2

↑D) = φ([(X2, Y2)]D)

Now, given (X1, Y1), (X2, Y2) ∈ C(D,B,R|D×B), such that (X1, Y1) ≤D

(X2, Y2), we obtain that

ψ(X1, Y1) = [(X1, X1
↑)]D

(∗)
⊑D [(X2, X2

↑)]D = ψ(X2, Y2)

where (∗) holds because X1
↑D↓= X↑D↓D

1 = X1 ⊆ X2= X↑D↓D
2 = X2

↑D↓. □

As a consequence, (C(A,B,R)/ρD,⊑D) is a complete lattice, which will
be taken into account in the relationship with the local congruences.

3.2. The poset associated with a local congruence

Now, we define a new relationship on the elements of the quotient set
provided by a local congruence, which turns out to be a partial order as we
will prove in the following result.
Theorem 16. Given a complete lattice (L,⪯) and a local congruence δ on
L, the binary relation defined as follows:

[x]δ ≤δ [y]δ if ⊥L ∈ [x]δ, or xM ⪯ y′

where y′ ∈ [y]δ, xM =
∨

xi∈[x]δ xi and ⊥L is the bottom of (L,⪯), is a partial

order for L/δ.

Proof. We consider a lattice (L,⪯), a local congruence δ on L and the
relation ≤δ defined above. We are going to prove that the relation ≤δ

is a reflexive, antisymmetric and transitive relation. It is clear that it is
reflexive. In order to prove the antisymmetry property, let us consider two
classes [x]δ, [y]δ ∈ L/δ satisfying that [x]δ ≤δ [y]δ and [y]δ ≤δ [x]δ, then we
have to distinguish the following cases:

1. If ⊥L ∈ [x]δ and ⊥L ∈ [y]δ, then [x]δ = [y]δ since the equivalence
classes are disjoint.
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2. If ⊥L ∈ [x]δ and ⊥L ̸∈ [y]δ, then since [x]δ ≤δ [y]δ, we have that
there exists y′ ∈ [y]δ, such that ⊥L ⪯ y′. On the other hand, since
[y]δ ≤δ [x]δ, there exists x′ ∈ [x]δ, such that yM ⪯ x′. Therefore,

⊥L ⪯ y′ ⪯ yM ⪯ x′

which implies that [x]δ = [y]δ, by the convexity of the equivalence
classes provided by local congruences.

3. If ⊥L ̸∈ [x]δ and ⊥L ̸∈ [y]δ, then since [x]δ ≤δ [y]δ, we have that
there exists y′ ∈ [y]δ, such that xM ⪯ y′. On the other hand, since
[y]δ ≤δ [x]δ, there exists x′ ∈ [x]δ, such that yM ⪯ x′. Consequently,

xM ⪯ y′ ⪯ yM ⪯ x′

and, by the convexity of the classes, we can conclude that [x]δ = [y]δ.

Now, we consider three different classes [x]δ, [y]δ, [z]δ ∈ L/δ such that
[x]δ ≤δ [y]δ and [y]δ ≤δ [z]δ in order to prove the transitivity property. We
only have to distinguish the following two cases:

1. If ⊥L ∈ [x]δ, ⊥L ̸∈ [y]δ and ⊥L ̸∈ [z]δ, then we have straightforwardly
that ⊥L ⪯ z′ for any z′ ∈ [z]δ by definition of infimum of the lattice.
Therefore, [x]δ ≤δ [z]δ.

2. If ⊥L ̸∈ [x]δ, ⊥L ̸∈ [y]δ and ⊥L ̸∈ [z]δ, then since [x]δ ≤δ [y]δ and
[y]δ ≤δ [z]δ, we have that there exist y′ ∈ [y]δ and z′ ∈ [z]δ such that
xM ⪯ y′ and yM ⪯ z′. Therefore,

xM ⪯ y′ ⪯ yM ⪯ z′,

which implies that xM ⪯ z′, i.e. [x]δ ≤ [z]δ.

Hence, we can conclude that the binary relation ≤δ is a partial order. □

The condition xM ⪯ y′ given in Theorem 16 can clearly be more concrete,
i.e., since it is satisfied that y′ ⪯ yM for all y′ ∈ [y]δ, we have that xM ⪯ yM
in particular, is satisfied. This fact is stated in the following result.

Corollary 17. Given a complete lattice (L,⪯) and a local congruence δ on
L, the partial order defined in Theorem 16 is equivalent to the following:

[x]δ ≤δ [y]δ if ⊥L ∈ [x]δ or xM ⪯ yM

where yM =
∨

yi∈[y]δ yi.
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Notice that the previous ordering is associated with the join-sublattice
structure given by an attribute reduction (Proposition 6). Hence, since we
could also include a bottom element, we could think that this ordering can
provide a complete lattice. However, when we define the quotient set of an
arbitrary local congruence δ on a lattice L with the partial order ≤δ, we do
not always obtain that L/δ is a lattice.

Example 18. Let us consider a context (A,B,R) whose relation is given
in Table 1. We also consider a local congruence δ on the associated concept
lattice C(A,B,R) which is shown on the left side of Figure 1.

If we define the quotient set C(A,B,R)/δ with the partial order defined
in Theorem 16, we obtain that (C(A,B,R)/δ,≤δ) is not a lattice but a
poset because the infimum of each pair of elements of (C(A,B,R)/δ,≤δ)
does not exist, for instance, the lower bounds of the concepts C12 and C13

are the concepts C3, C4 and C1 whence C3 and C4 are minimal, as it can be
observed in the right side of Figure 1. Hence, the infimum of C12 and C13

does not exist. □

R b1 b2 b3 b4 b5 b6 b7
a1 1 1 1 1 1 0 0
a2 1 1 0 1 0 0 0
a3 1 1 1 0 1 0 0
a4 0 1 1 0 1 1 0
a5 0 1 1 0 0 1 1
a6 1 0 0 0 0 0 0
a7 0 0 1 0 0 0 0

Table 1: Relation of Example 18.

Therefore, (C(D,B,R)/δ,≤δ) is not a lattice in general. Moreover, local
congruences can merge different equivalent classes, which can have a re-
markable impact in the reduced context with a repercussion in the reduced
concept lattice.

Specifically, since δ is a local congruence whose equivalence classes con-
tain the classes of (C(A,B,R)/ρD,⊑D), given [C]δ ∈ C(A,B,R)/δ, there
exists an index set ΛC , such that

[C]δ =
⋃

{[Cλ]D | [Cλ]D ∈ C(A,B,R)/ρD, λ ∈ ΛC}
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C1

C2

C3

C4

C5

C6

C7 C8

C9 C10

C11

C12
C13

C14

[C1]δ

[C2]δ [C3]δ [C4]δ

[C11]δ [C12]δ [C13]δ

[C14]δ

Figure 1: The local congruence δ on C(A,B,R) of Example 18 (left) and its quotient set
(C(A,B,R)/δ,≤δ) (right).

where {[Cλ]D | [Cλ]D ∈ C(A,B,R)/ρD, λ ∈ ΛC} is a convex sublattice of
(C(A,B,R)/ρD,⊑D), in which [CM ]D is the greatest class and [Cm]D, with
Cm =

∧
Ci∈[C]D

Ci is the least one. Hence, it is possible that some class

[Cλ]D ∈ C(A,B,R)/ρD with λ ∈ ΛC , be a join-irreducible element. Hence,
the local congruence is grouping a join-irreducible class into another class.
This fact can be reflected into the reduced context avoiding that the concept
[Cλ]D appears in the reduced concept lattice. Since [Cλ]D is join-irreducible,
Obg([Cλ]D) ̸= ∅ and this set must be removed from B in order to avert
the computation of this join-irreducible element. As a consequence of this
deletion, other concepts can also be removed as a collateral effect, as the
following example shows.

Example 19. We consider a context (A,B,R) whose relation is given in
Table 2 and a subset of attribute D = {a1, a3, a4} from which we reduce the
original context, that is, we remove the attributes a2 and a5. The associ-
ated concept lattice C(A,B,R) and the induced partition by the attribute
reduction, ρD, are shown on Figure 2, left and right sides respectively.

Now, we consider the least local congruence δ on the associated concept
lattice C(A,B,R) containing the partition induced by the attribute reduc-
tion, which is illustrated on the left side of Figure 3. Note that the class
[C6]δ contains the class [C6]D, which is not a convex sublattice of the orig-
inal concept lattice and it also contains the join-irreducible class [C2]D, as

13



R b1 b2 b3 b4 b5
a1 1 0 0 0 0
a2 0 1 0 1 0
a3 0 1 1 1 0
a4 1 0 0 1 0
a5 0 0 1 1 1

Table 2: Relation of Example 19.

b1
a1

b4

b3
a2
b2 a4

a5
b5 a3

C1

C0

C2

C4 C5 C3

C7 C6

C8

Figure 2: The associated concept lattice C(A,B,R) (left) and the induced partition ρD
(right) of Example 19.

it is shown on the right side of Figure 3, due to the equivalence class of δ
has to be necessarily a convex sublattice.

C1

C0

C2

C4 C5 C3

C7 C6

C8

[C1]D

[C0]D

[C2]D

[C3]D[C6]D

[C8]D

Figure 3: The local congruence δ on C(A,B,R) of Example 19 (left) and its effect on
C(A,B,R)/ρD (right).
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Therefore, in order to avoid the computation of this concept, the reduced
context must be modified removing Obg([C2]D) = {b4} from B. However,
this modification also affects to another concept. Specifically, since [C3]D =
[C1]D ∨ [C2]D and C3 is not generated by any object, this concept also
disappears. Thus, grouping/removing join-irreducible elements by a local
congruence can also have some impact in other concepts.

On the right side of Figure 4, the quotient set of the least local con-
gruence δ containing the equivalence relation associated with the reduc-
tion given by the subset D ⊆ A is depicted, and the modified context
C(D,B\{b4}, R|D×B\{b4}) is shown on the left side. It is clear that both
lattices are not isomorphic:

C(D,B,R|D×B)\{[C2]D} ≁= C(D,B\{b4}, R|D×B\{b4})

□

C ′
1

C ′
0

C ′
6

C ′
8

[C1]δ

[C0]δ

[C3]δ

[C6]δ

[C8]δ

Figure 4: The concept lattice (C(D,B\{b4}, R|D×B\{b4}),≤D) (left) and the quotient set
(C(D,B,R)/δ,≤δ) (right) of Example 19.

As we have shown previously, the grouping of concepts by a local con-
gruence can be seen as an elimination of concepts of the concept lattice,
which has an impact on the context. The following section focuses on this
issue.

4. Impact of removing elements in a concept lattices

In this section, we focus on the impact of local congruences that com-
plement attribute reductions in formal contexts. Specifically, on the least
local congruence containing the equivalence relation (partition) induced by
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the reduction of a context (A,B,R) by a subset D ⊆ A. Hence, we are in-
terested in analyzing how the application of this local congruence disrupts
the concept lattice associated with the reduced context (D,B,R|D×B).

Therefore, this section will study the necessary modifications to be done
in a context, if some elements of the concept lattice are removed. For
that purpose, we will distinguish two different situations described in the
following two sections, depending on whether the removed element is a join-
irreducible element or not.

Due to local congruences group equivalence classes of the complete lat-
tice (C(A,B,R)/ρD,⊑D) and, by Theorem 15, they can be seen as elements
in (C(D,B,R|D×B),≤D), this section will be focused on the reduced context.
Moreover, in order to simplify the notation, we will simply write (A,B,R)
instead of the reduced context.

4.1. Removing join-irreducible elements

First of all, we will study the necessary modifications in a context when
join-irreducible elements need to be removed preserving the rest of concepts,
included the ones “generated” by the removed join-irreducible element, e.g.
preserving the concept whose join-decomposition contains the removed join-
irreducible concept.

From now on, we will assume that the lattice (C(A,B,R),≤) satisfies the
ACC. As we commented above, the subtraction of a join-irreducible concept
C, removing the objects in Obg(C), can also delete other concepts depend-
ing on it. However, the only subtraction of the join-irreducible element does
not alter the structure of complete lattice.

Lemma 20. Given a complete lattice (L,∧,∨) satisfying the ACC, and
p ∈ L a join-irreducible element. Then (L\{p},∧p,∨p) is a sublattice of
(L,∧,∨), where ∧p,∨p are the restriction of ∧,∨ to L\{p}, and in particular
a complete lattice.

Proof. Given X ⊆ L\{p}, in particular, we have that X ⊆ L. Therefore,∨
X exists in L. If

∨
X ̸= p, then the supremum also exits in L\{p}.

Otherwise, if
∨
X = p, by hypothesis and Theorem 8, there exists a finite

subset F ⊆ X such that p =
∨
X =

∨
F , which contradicts that p is a

join-irreducible element due to p ̸∈ F . Therefore, (L\{p},∧p,∨p) is a join-
structure. Since the bottom of the lattice (L,∧,∨) is not a join-irreducible
element, then it also belongs to L\{p}. Thus, (L\{p},∧p,∨p) is a sublattice
of (L,∧,∨). □
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Although the structure is preserved in a general lattice, in a concept
lattice, removing a join-irreducible element implies the elimination of some
objects of the context, which can have some impact in other concepts, as
Example 19 shown. Now, we introduce a procedure to modify the original
context in order to obtain a new concept lattice isomorphic to the complete
lattice obtained after removing a join-irreducible element.

Given a concept Ck ∈ C(A,B,R), different from the top element, the
set

T (Ck) = {Ci | Ci ∈ C(A,B,R), Ck < Ci}
is not empty, since it contains the top element (B,B↑), and there exists
its infimum, because (C(A,B,R),≤) is a complete lattice. This infimum
concept will be denoted as Ct

k and the minimal elements of T (Ck)\{Ct
k} as

Cmi
k , with i in an index set Γ.
Now, we analyze the associated context to the concept lattice obtained

after removing a join-irreducible concept Cj ∈ C(A,B,R). In addition, we
will denote the set of all join-decompositions of a concept C ∈ C(A,B,R)
by J(C).

1. If Ct
j ̸= Cj and

(a) there exists a join-decomposition of Ct
j , which does not contain

to Cj, then the elements Obg(Cj) are removed from B, obtaining
a new set of objects B∗ = B\Obg(Cj).

(b) all join-decompositions of Ct
j contains to Cj. In this case, we

consider again two cases:

i. if Obg(Ct
j) ̸= ∅, then the elements Obg(Cj) are removed

from B, obtaining a new object B∗ = B\Obg(Cj).
ii. if Obg(Ct

j) = ∅, we change the elements Obg(Cj) in B by a
new one b∗, that is, we remove the elements Obg(Cj) from
B, we define a new set of objects B′ = B\Obg(Cj) and we
add the new b∗ to B′, B∗ = {b∗} ∪ (B\Obg(Cj)). Moreover,
a new relation R∗ ⊆ A × B∗ is considered, which is defined
as follows:

R∗ = R|A×B′ ∪ {(a, b∗) | a ∈ I(Ct
j)}

2. if Ct
j = Cj, we consider the minimal elements Cmi

j , with i ∈ Γ. Clearly,
Cmi

j ̸= Cj, for all i ∈ Γ, and we apply Step 1 to all these minimal
concepts. Specifically, we consider the subset Γ′ ⊆ Γ, defined as

Γ′ = {i ∈ Γ | all join-decompositions of Cmi
j contains to Cj and Obg(Cmi

j ) = ∅}
17



(a) if Γ′ = ∅, then the elements Obg(Cj) are removed from B, ob-
taining a new set of objects B∗ = B\Obg(Cj).

(b) otherwise, Γ′ ̸= ∅, and we define the new set of objects as B∗ =
{b∗i | i ∈ Γ′} ∪ B′, where B′ = B\Obg(Cj). Moreover, a new
relation R∗ ⊆ A×B∗ is considered, which is defined as follows:

R∗ = R|A×B′ ∪ {(a, b∗i ) | a ∈ I(Cmi
j ), i ∈ Γ′}

These steps are translated into Algorithm 1 in order to present a more
simple an operational procedure.

Notice that the first step and Step 2a are merged in Line 3. Since Cj is
join-irreducible, if Obg(Cj) has only one element, it is an absolutely neces-
sary object1 and if Obg(Cj) has more than one element, they are relatively
necessary objects. Hence, all of them need to be removed in order to ensure
that the concept Cj does not appear.

The mechanism above computes the required context, as the following
result proves.

Theorem 21. Given a context (A,B,R) and a join-irreducible concept Cj ∈
C(A,B,R), we have that

(C(A,B,R)\{Cj},≤j) ∼= (C(A,B∗, R∗),≤∗),

where B∗ and R∗ is the set and the relation given by Algorithm 1, and ≤j

is the ordering defined from the restriction of ≤ to C(A,B,R)\{Cj}.

Proof. The proof straightforwardly holds, if the intents of both set of
concepts coincide. First of all, we will prove that the set of intents of
concepts of C(A,B∗, R∗) is contained in the sets of intents of concepts of
C(A,B,R)\{Cj}. For that purpose, let us consider an arbitrary concept
(X, Y ) ∈ C(A,B∗, R∗) and we will prove that Y is also the intent of a con-
cept of C(A,B,R)\{Cj}. We differentiate the derivation operators of each
context, that is, for the context (A,B∗, R∗) we will denote the derivation
operators as ( ↑∗ , ↓∗) and for (A,B,R) as ( ↑, ↓).

According to Algorithm 1, several cases should be distinguished:

1. If in the construction of (A,B∗, R∗) the condition given in Line 3 has
been satisfied, then B∗ ⊆ B and, since the set of attributes is the same

1We are considering dual notions of attribute reduction [14].
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Algorithm 1: Removing a join-irreducible concept from a concept
lattice
input : (A,B,R), Cj, T (Cj), Γ
output: (A,B∗, R∗)

1 Compute the infimum concept Ct
j of the set T (Cj);

2 if Ct
j ̸= Cj, then

3 if there exists χ ∈ J(Ct
j) such that Cj ̸∈ χ or Obg(Ct

j) ̸= ∅
then

4 B∗ = B\Obg(Cj);
5 R∗ = R|A×B∗ ;

6 else
7 B′ = B\Obg(Cj);
8 B∗ = {b∗} ∪B′;
9 R∗ = R|A×B′ ∪ {(a, b∗) | a ∈ I(Ct

j)};

10 else
11 Compute the minimal elements Cmi

j with i ∈ Γ;

12 Define the subset Γ′ ⊆ Γ as
13 Γ′ = {i ∈ Γ | Cj ∈ χ for all χ ∈ J(Cmi

j ) and Obg(Cmi
j ) = ∅};

14 if Γ′ = ∅ then
15 B∗ = B\Obg(Cj);
16 R∗ = R|A×B∗ ;

17 else
18 B′ = B\Obg(Cj);
19 B∗ = {b∗i | i ∈ Γ′} ∪B′;
20 R∗ = R|A×B′ ∪ {(a, b∗i ) | a ∈ I(Ct

j), i ∈ Γ′};

21 return (A,B∗, R∗)

in both contexts, we have that X↑∗ = X↑. Therefore, the following
chain of inequalities holds:

Y ↓↑ = X↑∗↓↑ = X↑↓↑ = X↑ = X↑∗ = Y

2. If in the construction of (A,B∗, R∗) the condition given in Line 6 has
been satisfied, then B∗ = B′ ∪ {b∗} where B′ ⊆ B. In this case, we
have to differentiate three cases:
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2.1. If Y⊆b∗↑∗ , then we have that b∗ ∈ b∗↑∗↓∗ ⊆ Y ↓∗ = X and so,
the extent of the concept can be written as X = X0 ∪ {b∗}
where X0 ⊆ B′ and, since the set of attributes is the same in
both context, we have that X↑∗

0 = X↑
0 . Thus, Y = X↑∗ = (X0 ∪

{b∗})↑∗ = X↑∗
0 ∩b∗↑∗ = X↑

0∩I(Ct
j) by construction in Algorithm 1

and therefore,

Y ↓↑ = X↑∗↓↑ = (X↑
0 ∩I(Ct

j))
↓↑ (∗)

= (X0∪E(Ct
j))

↑↓↑ = (X0∪E(Ct
j))

↑

The equality (∗) holds because Ct
j is a concept of (A,B,R) and

therefore,

(X0 ∪ E(Ct
j))

↑ = X↑
0 ∩ I(Ct

j) = X↑∗
0 ∩ b∗↑∗ = X↑∗ = Y

2.2. If Y ̸⊆ b∗↑∗ , then X ⊆ B′ ⊆ B. Thus, the demonstration is
analogous to the one given in the first case.

3. If in the construction of (A,B∗, R∗) the condition given in Line 14 has
been satisfied, the proof follows an analogous reasoning to the one
given in the first case.

4. If in the construction of (A,B∗, R∗) the condition given in Line 17 has
been satisfied, the proof is analogous to one given in the second case,
but considering {b∗i } instead of {b∗}.

Now, we will prove that the intents of concepts of C(A,B,R)\{Cj} are
also intents of concepts of C(A,B∗, R∗). For that purpose, let us consider a
concept (X, Y ) ∈ C(A,B,R)\{Cj}. Depending on the removed concept Cj,
we can distinguish several cases considered in Algorithm 1:

1. If the condition given in Line 3 is satisfied, then B∗ ⊆ B and, since the
set of attributes is the same in both context, we have that X↑∗ = X↑.
Therefore,

Y ↓∗↑∗ = X↑↓∗↑∗ = X↑∗↓∗↑∗ = X↑∗ = X↑ = Y

2. If the condition given in Line 6 is satisfied, then B∗ = B′∪{b∗} where
B′ ⊆ B. In this case, we have to differentiate three cases:
2.1. If Y⊆I(Ct

j), then we can see the extent as X = X0 ∪ E(Ct
j).

Thus, Y = X↑ = X↑
0 ∩ E(Ct

j)
↑ = X↑

0 ∩ I(Ct
j) = X↑∗

0 ∩ I(Ct
j)

since X0 ⊆ B′ ⊆ B∗ and the set of attributes is the same in both
context, we have that X↑

0 = X↑∗
0 . Therefore,

Y ↓∗↑∗ = X↑↓∗↑∗ = (X↑∗
0 ∩I(Ct

j))
↓∗↑∗ (∗)

= (X↑∗
0 ∩b∗↑∗)↓∗↑∗ = (X0∪b∗)↑∗↓

∗↑∗
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The equality (∗) holds because I(Ct
j) = b∗↑∗ by construction in

Algorithm 1. Therefore,

(X0∪b∗)↑∗↓
∗↑∗ = (X0∪b∗)↑∗ = X↑∗

0 ∩b∗↑∗ = X↑
0 ∩I(Ct

j) = X↑ = Y

2.2. If Y ̸⊆ I(Ct
j), then X ⊆ B′ ⊆ B. Thus, the proof of this case is

similar to the first case.

3. If the condition given in Line 14 is satisfied. The proof of this case is
analogous to the one given in the first case.

4. If the condition given in Line 17 is satisfied. The proof of this case
is analogous to the one given in the second case, but considering {b∗i }
instead of {b∗}.

Therefore, we have proved that the intents are preserved and so, both
lattices are isomorphic. □

This procedure can be applied sequentially, when more than one join-
irreducible element need to be removed.

Moreover, by the notions of attribute and object reduction, the num-
ber of modified objects is the minimum one for ensuring the isomorphism
in Theorem 21. Notice that all objects in Obg(Cj) have been removed in
order to erase Cj and the minimum number of objects (only one per con-
cept) have been introduced to preserve the concepts depending (in a join-
decomposition) on Cj (see Example 19). Thus, the proposed mechanism,
to characterize the impact of removing a join-irreducible concept from the
concept lattice in the context, provides the closest context to the original
one.

4.2. Removing non-join-irreducible elements

Moreover, we also need to inspect the possibility of removing a non-
join-irreducible element, since the class [C]δ can also includes this kind of
elements. This section will be devoted to this issue.

In a general lattice (L,∧,∨), given a non-join-irreducible element y ∈ L,
it can be meet-irreducible or not. Clearly, in the former case a dual result
to Lemma 20 arises.

Lemma 22. Given a complete lattice (L,∧,∨) satisfying the DCC, and
q ∈ L a meet-irreducible element. Then (L\{q},∧q,∨q) is a sublattice of
(L,∧,∨), where ∧q,∨q are the restriction of ∧,∨ to L\{q}, and in particular
a complete lattice.
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Proof. The proof is dual to the one given in Lemma 20. □

Therefore, if a meet-irreducible concept is removed, a dual procedure
to Algorithm 1 can be done removing attributes instead of objects, which
is detailed in Algorithm 2. Notice that the set M(Ck) is the set of all
meet-decompositions of a concept Ck ∈ C(A,B,R) and the set S(Ck) is the
dual of the set T (Ck), that is, S(Ck) = {Ci | Ci ∈ C(A,B,R), Ci < Ck}.
Also a dual result to Theorem 21 arises when a meet-irreducible element is
removed from a general context.

Theorem 23. Given a context (A,B,R) and a meet-irreducible concept
Ck ∈ C(A,B,R), we have that

(C(A,B,R)\{Ck},≤k) ∼= (C(A∗, B,R∗),≤∗),

where A∗ and R∗ is the set and the relation given by Algorithm 2, and ≤k

is the ordering defined from the restriction of ≤ to C(A,B,R)\{Ck}.

Proof. The proof is dual to the one given to Theorem 21. □

Now, we will consider the case when the element to be removed is neither
meet-irreducible nor join-irreducible. The following example shows that the
structure of complete lattice does not hold.

Example 24. We consider a context (A,B,R) whose relation is given in
Table 3 and a subset of attributes D = {a1, a2, a3, a4}, that is, we remove
the attributes a5 and a6. The concept lattice C(A,B,R) and the induced
partition by the attribute reduction, ρD, are shown in Figure 5, left and
right sides respectively.

Now, we consider the least local congruence δ on the concept lattice
C(A,B,R) containing the partition induced by the attribute reduction,
which is illustrated in the left side of Figure 6. Note that the class [C8]δ
contains the class [C8]D, which is not a convex sublattice of the original
concept lattice and so, it also contains the class [C3]D, as it is shown in the
middle of Figure 6, due to the equivalence class of δ has to be necessarily a
convex sublattice.

However, the class [C3]D is neither a meet-irreducible nor a join-irreducible
element of C(A,B,R)/ρD and if we merge it with [C8]D as the local con-
gruence δ does, then the lattice structure is broken. As a consequence, the
quotient set (C(D,B,R)/δ,≤δ) is not a lattice but only a poset, as it is
shown in the right side of Figure 6. □
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Algorithm 2: Removing a meet-irreducible concept of a concept
lattice
input : (A,B,R), Cl, S(Cl), Γ
output: (A∗, B,R∗)

1 Compute the supremum concept Cs
l of the set S(Cl);

2 if Cs
l ̸= Cl, then

3 if there exists ψ ∈ M(Cs
l ) such that Cl ̸∈ ψ or Atg(Cs

l ) ̸= ∅
then

4 A∗ = A\Atg(Cl);
5 R∗ = R|A∗×B;

6 else
7 A′ = A\Atg(Cl);
8 A∗ = {a∗} ∪ A′;
9 R∗ = R|A′×B ∪ {(a∗, b) | b ∈ E(Cs

l )};

10 else
11 Compute the maximal elements Csi

l with i ∈ Γ;
12 Define the subset Γ′ ⊆ Γ as
13 Γ′ = {i ∈ Γ | Cl ∈ ψ for all ψ ∈ M(Csi

l ) and Atg(Csi
l ) = ∅};

14 if Γ′ = ∅ then
15 A∗ = A\Atg(Cl);
16 R∗ = R|A∗×B;

17 else
18 A′ = A\Atg(Cl);
19 A∗ = {a∗i | i ∈ Γ′} ∪ A′;
20 R∗ = R|A′×B ∪ {(a∗i , b) | b ∈ E(Cs

l ), i ∈ Γ′};

21 return (A∗, B,R∗)

Although the obtained poset is not a lattice, the Dedekind-MacNeille
completion of the obtained poset provides the structure of a complete lattice.
Indeed, this complete lattice is isomorphic to the lattice in which we have
decided to remove a concept.

Lemma 25. Given a complete lattice (L,⪯) satisfying the ACC and DCC,
and a non-meet-irreducible and non-join-irreducible element y ∈ L. Then

(DM(L\{y}),⊆) ∼= (L,⪯)
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R b1 b2 b3 b4 b5 b6
a1 1 0 0 0 0 0
a2 0 1 0 0 0 0
a3 1 1 1 0 1 0
a4 1 1 0 1 0 0
a5 1 1 0 0 1 0
a6 1 1 1 0 0 1

Table 3: Relation of Example 24.

b2
a2

b1
a1

b3
a5
b5

a4
b4

a6
b6 a3

C0

C1 C2

C3

C4 C5 C6

C7 C8

C9

Figure 5: The concept lattice C(A,B,R) (left) and the induced partition ρD (right) of
Example 24.

Proof. Since (L,⪯) satisfies the ACC and DCC, then clearly L\{y} is
join-dense and meet-dense (it contains the whole set of join and meet irre-
ducible elements of L) and so, by Theorem 10, we obtain the isomorphism
(DM(L\{y}),⊆) ∼= (L,⪯). □

Therefore, since the attribute reduction procedure based on local con-
gruences is also focused on obtaining a quotient set with the structure of
a complete lattice, the Dedekind-MacNeille completion can be applied to
achieve this challenge.

Proposition 26. Given a context (A,B,R) and a non-join and non-meet-
irreducible concept Ci ∈ C(A,B,R), we have that

(DM(C(A,B,R)\{Ci}),⊆i) ∼= (C(A,B,R),≤),
24



C0

C1 C2

C3

C4 C5 C6

C7 C8

C9

[C0]D

[C1]D

[C2]D

[C3]D

[C6]D[C8]D

[C9]D

[C0]δ

[C1]δ [C2]δ

[C6]δ[C8]δ

[C9]δ

Figure 6: The local congruence δ on C(A,B,R) (left), δ on C(A,B,R)/ρD (middle) and
the quotient set (C(D,B,R)/δ,≤δ) of Example 24.

where ⊆i is the ordering defined by the Dedekind-MacNeille completion.

Proof. The proof straightforwardly follows from Lemma 25. □

Therefore, although a class with only this kind of concepts will be
grouped in another class, no impact have in the concept lattice. There-
fore, the application of the Dedekind-MacNeille completion is only needed
to obtain a complete lattice isomorphic to the original one. The following
theorem summarizes these results.

Similarly to the other procedures, this mechanism can be applied se-
quentially to different concepts and, moreover, Algorithms 1 and 2 can be
interspersed.

Theorem 27. Given a context (A,B,R) and a concept Ck ∈ C(A,B,R),
we have that

(DM(C(A,B,R)\{Ck}),⊆k) ∼= (C(A∗, B∗, R∗),≤∗),

where A∗, B∗ and R∗ are the sets and the relation given by either Algo-
rithm 1 or Algorithm 2 or the original ones in case of Ck is neither a
join nor a meet irreducible element, and ⊆k is the ordering defined by the
Dedekind-MacNeille completion.

Proof. The proof follows from Theorems 21 and 23, and the comment
above concerning neither join nor meet irreducible elements. □
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Since this theorem can be applied sequentially to the classes grouped
by a local congruence, we have just characterized the impact of comple-
menting an attribute reduction with the application of a local congruence.
As a consequence, we can obtain a context from the original one which
is isomorphic to the quotient set of the local congruence, considering the
ordering defined in Theorem 16. It is also relevant to highlight that this
mechanism computes the contexts more similar to the original one. Notice
that either Algorithm 1 or Algorithm 2 can be applied to meet and join
irreducible concepts and so, two different (although isomorphic) contexts
arise. Therefore, the user can decide what kind of elements (attributes or
objects) prefers to modify, and obtain the closest context to the original
one, under this criterion.

5. Conclusions and future work

In this work, we have studied the impact of applying a local congruence
on a concept lattice associated with a reduced context. We have proved
that the quotient set generated by the equivalence relation induced by an
attribute reduction is isomorphic to the concept lattice corresponding to the
the reduced context. However, we have seen that this fact does not hold
for the quotient set generated by local congruences. We have also shown
that the clustering carried out by a local congruence, after an attribute
reduction, can have some impact in other concepts of the concept lattice.
For that reason, we have studied the necessary modification to be done
in a context when a concept of an arbitrary concept lattice needs to be
removed. For this study, we have distinguished two types of elements in the
lattice: join-irreducible and non-join-irreducible elements. We have proved
that when we remove a join-irreducible element from a general complete
lattice, the structure of complete lattice is preserved. Furthermore, it has
been presented and proved a procedure for computing a modified context
whose associated concept lattice is isomorphic to the original concept lattice
when one of its join-irreducible concepts has been removed throughout the
delation of the objects generating that concept. In addition, dual results can
be obtained for meet-irreducible concepts and an analogous procedure has
been introduced when the removed element is a meet-irreducible concept.
Finally, we have also analyzed the case when the removed element is neither
a meet nor a join-irreducible element of the concept lattice, showing that,
in this particular case, the Dedekind-MacNeille completion of the obtained
poset is needed in order to provide the structure of a complete lattice.
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In the near future, the introduced algorithms will be complemented with
different attribute reduction mechanisms [11, 2, 16] and will be applied to
real databases, such as the ones collected from our participation in the
COST Action DigForASP. Moreover, the relationship between local con-
gruences and attribute implications will be studied.
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