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Abstract

The construction of reducts, that is, minimal sets of attributes contain-
ing the main information of a database, is a fundamental task in different
frameworks, such as in Formal Concept Analysis (FCA) and Rough Set
Theory (RST). This paper will be focused on a general fuzzy extension of
FCA, called multi-adjoint concept lattice, and we present a study about
the attributes generating meet-irreducible elements and on the reducts in
this framework. From this study, we introduce interesting results on the
cardinality of reducts and the consequences in the classical case.
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1. Introduction

Nowadays, collected databases generally contain a large amount of data
which makes their treatment a really difficult task. In addition, these data
usually include redundant information that only serves to increase the com-
plexity to handle the information. Knowledge reduction is a key step in
many areas that consider databases, for example, software engineering, in-
formation retrieval, data mining, knowledge discovery, machine learning,
among others [11, 12, 17, 19, 25, 24].

Formal Concept Analysis [14] is considered a useful tool to treat infor-
mation contained in databases by using a mathematical structure called
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concept lattice. These databases are composed by sets of attributes A and
objects B related between them by means of a relation R ⊆ A × B. The
high complexity in the computation of the concept lattice makes natural to
consider mechanisms in order to reduce the set of attributes or objects in
the considered database. This important goal in FCA has been studied in
diverse papers, which introduce different reduction mechanisms trying to
preserve the main information [3, 6, 13, 19, 23, 24, 25, 26].

In [8], the attribute classification theorems based on the categorization
of the set of attributes given by Pawlak to RST [22] were presented. These
theorems were stated within the fuzzy framework of multi-adjoint concept
lattices [20, 21], which is a generalization of FCA that provides a more flex-
ible environment capable of accommodating other fuzzy approaches given
in the literature [1, 2, 4, 5, 15, 18]. Specifically, the attribute classification
theorems divide into three types the set of attributes -absolutely necessary,
relatively necessary and absolutely unnecessary attributes- remaining the
process of selection of these attributes for the construction of reducts.

In this paper, our research topic will follow in that direction, going
in depth in the study of reducts of any multi-adjoint context. For that
purpose, we introduce a new definition related to the attributes that gener-
ate meet-irreducible concepts of a multi-adjoint concept lattice. From this
notion, we rewrite in a simpler way the attribute classification theorems,
making easier their application, and we present several properties relating
this notion to the relative necessary attributes. In addition, a study about
the cardinality of reducts will be introduced. We will prove that when the
set of relatively necessary attributes is non-empty, reducts with different
cardinalities arise. In this study, we will show under what conditions the
reducts of a multi-adjoint context have the same cardinality. Moreover, we
will provide a bound of the cardinality of any reduct, together with more
interesting results. The introduced results will be considered in the classical
case providing interesting consequences.

Although the paper is focused on the multi-adjoint concept lattice frame-
work, all these results will be essential in order to compute the reducts in
other (fuzzy) FCA and RST frameworks. The interesting case of fuzzy RST
we will be analyzed in the future.

The paper is organized as follows: an overview associated with pre-
liminary notions of multi-adjoint concept lattice framework and attribute
reduction are recalled in Section 2. Section 3 presents several properties
about attributes that generate meet-irreducible elements of a concept lat-
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tice. This section also includes some results related to the cardinality of
reducts together with different examples. The consideration of the previous
results in the classical case is given in Section 4. Section 5 finishes with
several conclusions and future challenges.

2. Preliminaries

In this section we recall the basic notions and necessary results in order
to classify the attributes in the multi-adjoint concept lattice framework.

2.1. Multi-adjoint concept lattice framework

Adjoint triples are the basic computational operators [9, 10] in the con-
sidered fuzzy concept lattice framework. These operators are generalizations
of a triangular norm (t-norm) and its residuated implication [16].

Definition 1. Let (P1,≤1), (P2,≤2), (P3,≤3) be posets and &: P1×P2 →
P3, ↙ : P3 × P2 → P1, ↖ : P3 × P1 → P2 be mappings, then (&,↙,↖) is
an adjoint triple with respect to P1, P2, P3 if:

x ≤1 z ↙ y iff x& y ≤3 z iff y ≤2 z ↖ x (1)

where x ∈ P1, y ∈ P2 and z ∈ P3. The condition (1) is also called adjoint
property.

Once we have recalled this notion, the definitions of multi-adjoint frame
and context are given below.

Definition 2. A multi-adjoint frame is a tuple (L1, L2, P,&1, . . . ,&n) where
(L1,⪯1) and (L2,⪯2) are complete lattices, (P,≤) is a poset and (&i,↙i

,↖i) is an adjoint triple with respect to L1, L2, P , for all i ∈ {1, . . . , n}.

Definition 3. Let (L1, L2, P,&1, . . . ,&n) be a multi-adjoint frame, a con-
text is a tuple (A,B,R, σ) such that A and B are nonempty sets (usually
interpreted as attributes and objects, respectively), R is a P -fuzzy relation
R : A× B → P and σ : A× B → {1, . . . , n} is a mapping which associates
any element in A×B with some particular adjoint triple in the frame.

The concept-forming operators ↑ : LB
2 → LA

1 and ↓ : LA
1 → LB

2 considered
in this framework are defined as

g↑(a) = inf{R(a, b) ↙σ(a,b) g(b) | b ∈ B} (2)

f ↓(b) = inf{R(a, b) ↖σ(a,b) f(a) | a ∈ A} (3)
3



for all g ∈ LB
2 , f ∈ LA

1 and a ∈ A, b ∈ B, where LB
2 and LA

1 denote the set
of mappings g : B → L2 and f : A → L1, respectively.

These operators form a Galois connection [21] and they are used to
compute the corresponding concepts. We say that a pair ⟨g, f⟩ with g ∈ LB

2 ,
f ∈ LA

1 is a multi-adjoint concept if the equalities g↑ = f and f ↓ = g hold.
The first component of a multi-adjoint concept is a fuzzy subsets of objects
g called extension and the second component is a fuzzy subsets of attributes
f called intension.

Definition 4. The multi-adjoint concept lattice associated with a multi-
adjoint frame (L1, L2, P,&1, . . . ,&n) and a context (A,B,R, σ) given, is the
set

M = {⟨g, f⟩ | g ∈ LB
2 , f ∈ LA

1 and g↑ = f, f ↓ = g}
where the ordering is defined by ⟨g1, f1⟩ ⪯ ⟨g2, f2⟩ if and only if g1 ⪯2 g2
(equivalently f2 ⪯1 f1).

In [7, 8], we presented a characterization of the meet-irreducible elements
of a multi-adjoint concept lattice in order to classify the set of attributes
of the associated multi-adjoint context. A meet-irreducible element is a
concept that cannot be expressed as infimum of strictly greater concepts of
the lattice.

Definition 5. Given a lattice (L,⪯), such that ∧,∨ are the meet and the
join operators, and an element x ∈ L verifying

1. If L has a top element ⊤, then x ̸= ⊤.

2. If x = y ∧ z, then x = y or x = z, for all y, z ∈ L.

we call x meet-irreducible (∧-irreducible) element of L. Condition (2) is
equivalent to

2′. If x < y and x < z, then x < y ∧ z, for all y, z ∈ L.

A join-irreducible (∨-irreducible) element of L is defined dually.

Beside the meet-irreducible elements, the characterization theorem con-
siders the following specific family of fuzzy subsets of attributes.

Definition 6. For each a ∈ A, the fuzzy subsets of attributes ϕa,x ∈ LA
1

defined, for all x ∈ L1, as

ϕa,x(a
′) =

{
x if a′ = a
⊥1 if a′ ̸= a
4



will be called fuzzy-attributes, where ⊥1 is the minimum element in L1.
The set of all fuzzy-attributes will be denoted as Φ = {ϕa,x | a ∈ A, x ∈ L1}.

Theorem 7. The set of ∧-irreducible elements of M, MF (A), is formed
by the pairs ⟨ϕ↓

a,x, ϕ
↓↑
a,x⟩ in M, with a ∈ A and x ∈ L1, such that

ϕ↓
a,x ̸=

∧
{ϕ↓

ai,xi
| ϕai,xi

∈ Φ, ϕ↓
a,x ≺2 ϕ

↓
ai,xi

}

and ϕ↓
a,x ̸= g⊤2, where ⊤2 is the maximum element in L2 and g⊤2 : B → L2

is the fuzzy subset defined as g⊤2(b) = ⊤2, for all b ∈ B.

This characterization is essential in order to obtain the attribute classi-
fication theorems that will be recalled in the following section.

2.2. Attribute reduction in multi-adjoint contexts

To begin with, we need to introduce the definitions of consistent set and
reduct [8].

Definition 8. A set of attributes Y ⊆ A is a consistent set of (A,B,R, σ)
if the following isomorphism holds:

M(Y,B,RY , σY×B) ∼=E M(A,B,R, σ)

This is equivalent to say that, for all ⟨g, f⟩ ∈ M(A,B,R, σ), there exists a
concept ⟨g′, f ′⟩ ∈ M(Y,B,RY , σY×B) such that g = g′.

Moreover, if M(Y \ {a}, B,RY \{a}, σY \{a}×B) ̸∼=E M(A,B,R, σ), for all
a ∈ Y , then Y is called a reduct of (A,B,R, σ).

The core of (A,B,R, σ) is the intersection of all the reducts of (A,B,R, σ).

The set of attributes can be classified, taking into account the reducts
of the associated context.

Definition 9. Given a formal context (A,B,R, σ) and the set Y = {Y ⊆
A | Y is a reduct} of all reducts of (A,B,R, σ). The set of attributes A can
be divided into the following three parts:

1. Absolutely necessary attributes (core attribute) Cf =
⋂

Y ∈Y Y .

2. Relatively necessary attributes Kf = (
⋃

Y ∈Y Y ) \ (
⋂

Y ∈Y Y ).

3. Absolutely unnecessary attributes If = A \ (
⋃

Y ∈Y Y ).

Finally, we include the attribute classification theorems presented in [8].
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Theorem 10 ([8]). Given ai ∈ A, we have that ai ∈ Cf if and only if
there exists xi ∈ L1, such that ⟨ϕ↓

ai,xi
, ϕ↓↑

ai,xi
⟩ ∈ MF (A), satisfying that

⟨ϕ↓
ai,xi

, ϕ↓↑
ai,xi

⟩ ≠ ⟨ϕ↓
aj ,xj

, ϕ↓↑
aj ,xj

⟩, for all xj ∈ L1 and aj ∈ A, with aj ̸= ai.

Theorem 11 ([8]). Given ai ∈ A, we have that ai ∈ Kf if and only if
ai /∈ Cf and there exists ⟨ϕ↓

ai,xi
, ϕ↓↑

ai,xi
⟩ ∈ MF (A) satisfying that Eai,xi

is not
empty and A \ Eai,xi

is a consistent set, where the sets Eai,x with ai ∈ A
and x ∈ L1 are defined as:

Eai,x = {aj ∈ A \ {ai} | there exist x′ ∈ L1, satisfying ϕ↓
ai,x

= ϕ↓
aj ,x′}

Theorem 12 ([8]). Given ai ∈ A, it is absolutely unnecessary, ai ∈ If , if
and only if, for each xi ∈ L1, we have that ⟨ϕ↓

ai,xi
, ϕ↓↑

ai,xi
⟩ ̸∈ MF (A), or in

the case that ⟨ϕ↓
ai,xi

, ϕ↓↑
ai,xi

⟩ ∈ MF (A), then A \Eai,xi
is not a consistent set.

The previous results allow us to give a classification of the set of at-
tributes in absolutely necessary, relatively necessary and absolutely unnec-
essary attributes. From this classification we can obtain reducts, which may
significantly reduce the computational complexity of the concept lattice.

3. Reducts of a multi-adjoint context

Besides knowing how the set of attributes is classified, it is necessary to
study how this classification influences in the selection of attributes to build
reducts. In this section, we will analyze the construction process of reducts
from the attribute classification shown in the previous section.

Evidently, the absolutely unnecessary attributes must be directly re-
moved. In addition, the absolutely necessary attributes, the attributes in
the core, must be included in all the reducts. Therefore, the main task is
the selection of the relatively necessary attributes, since when the set of
relatively necessary attributes is nonempty, several reducts are obtained.
Before starting this study, we will present some of the questions that we
want to answer: Do all the reducts have the same cardinality? What is the
size of reducts? How can we bound the size of reducts? When have reducts
got the same cardinality? How many minimal reducts has a context?

3.1. Attributes generating meet-irreducible elements

The answers to these previous questions will be based on the properties
of the subset of attributes generating a given concept.
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Definition 13. Given a multi-adjoint frame (L1, L2, P,&1, . . . ,&n), a con-
text (A,B,R, σ) associated with the concept lattice (M,⪯) and a concept C
of (M,⪯), the set of attributes generating C is defined as the set:

Atg(C) = {a ∈ A | there exists ϕa,x ∈ Φ such that ⟨ϕ↓
a,x, ϕ

↓↑
a,x⟩ = C}

First of all, we show that these sets are nonempty for meet-irreducible
concepts.

Proposition 14. If C is a meet-irreducible concept of (M,⪯), then Atg(C)
is a nonempty set.

Proof : By Theorem 7, if C ∈ (M,⪯) is a meet-irreducible concept, then
C = ⟨ϕ↓

a,x, ϕ
↓↑
a,x⟩ satisfying that ϕ↓

a,x ̸=
∧
ϕ↓
ai,xi

where ϕ↓
a,x ≺2 ϕ↓

ai,xi
and

ϕ↓
a,x ̸= g⊤2 . Therefore, in particular, we can conclude that a ∈ Atg(C) and

consequently Atg(C) ̸= ∅. □

The following example presents a particular context which will be con-
sidered for illustrating the results in this section.

Example 15. Let (L,⪯,&G) be a multi-adjoint frame, where &G is the
Gödel conjunctor with respect to L = {0, 0.5, 1}. In this framework, the
context is (A,B,R, σ), where A = {a1, a2, a3, a4, a5, a6}, B = {b1, b2, b3},
R : A×B → L is given by the table in Figure 1, and σ is constant.

The concept lattice of the considered framework and context are displayed
in Figure 1, from which it is easy to see that the meet-irreducible elements
are C0, C1, C2 and C3. Now, we will show that the sets Atg(C0), Atg(C1),
Atg(C2) and Atg(C3) are not empty. For that, the fuzzy-attributes associated
with the meet-irreducible concepts need to be obtained. Applying the concept-
forming operators to the fuzzy-attributes we have

⟨ϕ↓
a6,1.0

, ϕ↓↑
a6,1.0

⟩ = C0

⟨ϕ↓
a2,1.0

, ϕ↓↑
a2,1.0

⟩ = ⟨ϕ↓
a3,1.0

, ϕ↓↑
a3,1.0

⟩ = C1

⟨ϕ↓
a1,0.5

, ϕ↓↑
a1,0.5

⟩ = ⟨ϕ↓
a1,1.0

, ϕ↓↑
a1,1.0

⟩ =

⟨ϕ↓
a2,0.5

, ϕ↓↑
a2,0.5

⟩ = ⟨ϕ↓
a3,0.5

, ϕ↓↑
a3,0.5

⟩ = ⟨ϕ↓
a6,0.5

, ϕ↓↑
a6,0.5

⟩ = C2

⟨ϕ↓
a4,1.0

, ϕ↓↑
a4,1.0

⟩ = C3

obtaining the association which is written in Table 1.
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R b1 b2 b3

a1 1 1 0
a2 0.5 1 0
a3 0.5 1 0
a4 1 1 0.5
a5 1 1 1
a6 0.5 0.5 0

C0

C1

C2

C3

C4

Figure 1: Relation R and Hasse diagram of Example 15.

MF (A) Fuzzy-attributes generating the meet-irreducible concept
C0 ϕa6,1.0

C1 ϕa2,1.0, ϕa3,1.0

C2 ϕa1,0.5, ϕa1,1.0, ϕa2,0.5, ϕa3,0.5, ϕa6,0.5

C3 ϕa4,1.0

Table 1: Fuzzy-attributes generating the meet-irreducible concepts of Example 15.

From this table, the sets of attributes generating these concepts are straight-
forwardly determined:

Atg(C0) = {a6}
Atg(C1) = {a2, a3}
Atg(C2) = {a1, a2, a3, a6}
Atg(C3) = {a4}

Hence, these subsets of attributes are nonempty as Proposition 14 shows.□

In the following we will show the adaptation of the attribute classifica-
tion theorems introduced in [8], based on Definition 13. These results are
interesting because they simplify the original theorems, by using a simpler
language and notation, which make them easier to understand and apply.
Therefore, we can obtain the final classification in a more easy and intuitive
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way. The demonstrations of Theorems 16, 17 and 19 will be omitted since
they follow analogously to the ones given in [8].

The first one shows the classification of the absolutely necessary at-
tributes, based on Definition 13.

Theorem 16. Given an attribute a ∈ A, then a ∈ Cf if and only if there
exists a meet-irreducible concept C of (M,⪯) satisfying that a ∈ Atg(C)
and card(Atg(C)) = 1.

The characterization of the relatively necessary attributes is given below.

Theorem 17. Given an attribute a ∈ A, then a ∈ Kf if and only if a /∈
Cf and there exists C ∈ MF (A) with a ∈ Atg(C) and card(Atg(C)) > 1,
satisfying that

(
A \ Atg(C)

)⋃
{a} is a consistent set.

The following result is a consequence of the previous one. It will be
useful in the proof of one of the most important results in Section 3.2.

Corollary 18. Given an attribute a ∈ Kf , there exists a concept C ∈
MF (A) such that a ∈ Atg(C) satisfying that card(Atg(C)

⋂
Kf ) ≥ 2.

Finally, the adaptation of the theorem that classifies the absolutely un-
necessary attributes is shown in the next proposition.

Theorem 19. Given an attribute a ∈ A, then a ∈ If if and only if, for any
C ∈ MF (A), a /∈ Atg(C), or if a ∈ Atg(C) then

(
A \Atg(C)

)⋃
{a} is not a

consistent set.

As we mentioned above, this new version of the attribute classification
theorems provides a simpler way to obtain the final classification.

From Example 15 and considering the classification theorems we obtain
the following attribute classification:

If = {a1, a5}
Kf = {a2, a3}
Cf = {a4, a6}

Moreover, from Theorem 16, the singleton sets of attributes generating
a concept are characterized by the absolutely necessary attributes. For
instance, in Example 15, we have that Atg(C0) and Atg(C3) are the only
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singleton sets (where C0, C3 are meet-irreducible concepts) and they are
only composed of the attributes a6 and a4, respectively, which are the only
attributes in the core.

Relatively necessary attributes play an important role in the computa-
tion of the reducts. Theorem 17 provides an interesting property of these
attributes and the sets Atg(C) containing these attributes but more prop-
erties are needed. The first one deals with the set of attributes generating
a meet-irreducible element, when the intersection with the set of relatively
necessary attributes is not empty.

Proposition 20. If C is a meet-irreducible concept of (M,⪯) and Atg(C)∩
Kf ̸= ∅ then card(Atg(C)) ≥ 2.

Proof : If we assume that card(Atg(C)) = 1, then by hypothesis we have
that Atg(C)∩Kf = {a} and a ∈ Kf , which leads us to a contradiction with
Theorem 16. Hence, the inequality card(Atg(C)) ≥ 2 holds. □

Example 21. Considering again Example 15, the concept C2 is a meet-
irreducible element such that Atg(C2) ∩ Kf = {a1, a2, a3, a6} ∩ {a2, a3} =
{a2, a3} ̸= ∅. As a consequence, we have that card(Atg(C2)) = 4 > 2 as
Proposition 20 shows. In a similar situation the concept C1 is. □

The following results show that, if C is a meet-irreducible concept and
Atg(C) does not contain an attribute in the core, then this concept is ob-
tained from at least two different relatively necessary attributes.

Proposition 22. Let C be a meet-irreducible concept. If Atg(C)∩Cf = ∅
then card(Atg(C) ∩Kf ) ≥ 2.

Proof : If Atg(C) ∩ Cf = ∅ then, for all a ∈ Atg(C) we have that a /∈
Cf . In addition, since C ∈ MF (A) then, by Theorem 17, there exist at
least two attributes ai, aj ∈ Kf such that ai, aj ∈ Atg(C). Consequently,
card(Atg(C) ∩Kf ) ≥ 2. □

Observe that the converse is no true, in general. We can find a meet-
irreducible concept C, satisfying that card(Atg(C)∩Kf ) ≥ 2 and Atg(C)∩
Cf ̸= ∅. This can be seen when we take into account the concept C2 in
Example 15. Now, Atg(C2) = {a1, a2, a3, a6}. Therefore, Atg(C2) ∩ Cf =
{a6} and Atg(C2) ∩Kf = {a2, a3}.

10



The next proposition guarantees that, at least one meet-irreducible el-
ement satisfying the conditions shown in the previous proposition exists,
if the set of relatively necessary attributes is not empty. This result also
enriches Corollary 18.

Proposition 23. If Kf is not empty, then there exists a meet-irreducible
concept C, such that Atg(C) ∩ Cf = ∅ and card(Atg(C) ∩Kf ) ≥ 2.

Proof : If Kf ̸= ∅, then, by Theorem 17, there exists C ∈ MF (A) with
a ∈ Atg(C) and card(Atg(C)) > 1, satisfying that

(
A \ Atg(C)

)⋃
{a} is a

consistent set. Therefore, Atg(C) ∩ Cf = ∅, since otherwise in the compu-
tation of the set

(
A \ Atg(C)

)
we remove at least an attribute in Cf and

the obtained set,
(
A \ Atg(C)

)⋃
{a} is consistent, which contradicts that

all the attributes in the core Cf are in all the reducts. Moreover, by Propo-
sition 22, we can conclude that card(Atg(C) ∩Kf ) ≥ 2. □

For example, in Example 15, Kf = {a2, a3} ̸= ∅ and we have that the
meet-irreducible concept C1 satisfies Atg(C1)∩Cf = ∅ and Atg(C1)∩Kf =
{a2, a3}, where Atg(C1) = {a2, a3} and Cf = {a4, a6}.

3.2. On the cardinality of reducts

In this section, we will take into account the previous results in order
to show several statements about the cardinality of the reducts of a multi-
adjoint context.

The next result anticipates the sufficient condition we will use to ensure
that the cardinality of all the reducts coincides.

Proposition 24. If GK = {Atg(C) | C ∈ MF (A) and Atg(C) ∩ Kf ̸=
∅} is a partition of Kf , each attribute in Kf generates only one meet-
irreducible element of the concept lattice.

Proof : Given a ∈ Kf , by Theorem 17, we have that there exists a concept
C ∈ MF (A) such that a ∈ Atg(C). If we can find another ∧-irreducible con-
cept, C ′, satisfying that a ∈ Atg(C ′), we obtain that Atg(C)

⋂
Atg(C ′) ̸= ∅

which is a contradiction since GK is a partition of Kf . Consequently, the
attribute a only generates one meet-irreducible element. □

If GK is a partition of Kf we can guarantee that all the reducts have the
same cardinality, as the following result proves.
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Theorem 25. When the set

GK = {Atg(C) | C ∈ MF (A) and Atg(C) ∩Kf ̸= ∅}

is a partition of Kf , then:

(a) All the reducts Y ⊆ A have the same cardinality and, specifically, the
cardinality is:

card(Y ) = card(Cf ) + card(GK)

(b) The number of different reducts obtained from the multi-adjoint con-
text is ∏

Atg(C)∈GK

card(Atg(C))

Proof : First of all, we will prove item (a). Given any reduct Y of the
context (A,B,R, σ), we consider the set of attributes Y ′ = Y \ Cf and the
set CKf

= {C ∈ MF (A) | Atg(C) ∩ Kf ̸= ∅}. In order to prove that all
reducts have the same cardinality, we define a mapping

F : Y ′ −→ CKf

a 7−→ C

which associates each attribute a in Y ′ with a meet-irreducible concept C of
CKf

such that a ∈ Atg(C) and we demonstrate that F is a bijection. This
mapping is well-defined since if a ∈ Y ′ then, a ∈ Kf and, by Corollary 18,
there exists a meet-irreducible concept C such that a ∈ Atg(C). Therefore,
F (a) = C ∈ CKf

.
In order to show that F is order-embedding, we will consider two at-

tributes a1, a2 ∈ Y ′ such that F (a1) = F (a2) and we will prove by reductio
ad absurdum that a1 = a2. Hence, we will assume that a1 ̸= a2 we will
obtain a contradiction. As F (a1) = F (a2) = C then a1, a2 ∈ Atg(C) with
C ∈ MF (A) and Atg(C) ∩ Kf ̸= ∅. Since GK is a partition of Kf , by
Proposition 24, we obtain that each attribute a ∈ Kf generates only one
meet-irreducible concept, therefore we can remove the attribute a1 from the
set Y ′ and, as a consequence, we obtain that Y \ {a1} = Y ′ \ {a1} ∪ Cf

is a consistent set, which contradicts that Y is a reduct. Hence, we can
conclude that a1 = a2.

Now, we will prove that F is onto. If C ∈ CKf
then C ∈ MF (A) and

Atg(C)∩Kf ̸= ∅. On the other hand, Y = Y ′∪Cf is a reduct and therefore,
12



there exists a ∈ Y with a ∈ Atg(C). Due to the set GK is a partition of Kf ,
Atg(C)∩Kf ̸= ∅ and Proposition 24, we can ensure that Atg(C)∩Cf = ∅,
hence a ∈ Kf and, consequently, a ∈ Y ′ satisfying F (a) = C.

Due to the mapping F is a bijection, we can assert that card(Y ′) =
card(CKf

). Taking into account that Y ′ = Y \ Cf , the last equality can be
rewritten as card(Y \Cf ) = card(CKf

), or equivalently, card(Y )− card(Y ∩
Cf ) = card(CKf

). As a consequence, since Y ∩ Cf = Cf , we obtain that
card(Y ) = card(Cf ) + card(CKf

).
It only remains to prove that card(CKf

) = card(GK), but this equality is
straightforwardly obtained because a concept C is in CKf

if and only if the
set Atg(C) belongs to GK . Therefore, CKf

and GK have the same number
of elements.

Concerning item (b), we need to consider a subset of attributes from
which we can obtain each ∧-irreducible element of the concept lattice. For
any reduct Y ⊆ A, since Cf ⊆ Y , and the set

GK = {Atg(C) | C ∈ MF (A) and Atg(C) ∩Kf ̸= ∅}

is a partition of Kf , we have to choose one attribute for each element in
GK . Considering the multiplication principle, we deduce that all possible
combinations to select these attributes are∏

Atg(C)∈GK

card(Atg(C))

□

The next example clarifies the results stated in the previous theorem.

Example 26. Let (L1, L2, L3,⪯,&∗
G) be the multi-adjoint frame composed

by regular partitions of the unit interval in 10, 4 and 5 pieces, that is,
L1 = [0, 1]10, L2 = [0, 1]4, L3 = [0, 1]5, respectively, and the discretization of
Gödel conjunctor &∗

G : L1 × L2 → L3. The considered context (A,B,R, σ)
is composed by the set of attributes A = {a1, a2, a3, a4, a5, a6}, the set of
objects B = {b1, b2, b3}, the relation R : A × B → L3 displayed in the left
side of Figure 2 and the mapping σ which is constantly &∗

G.
From this framework and this context, we obtain the Hasse diagram of

the concept lattice displayed in the right side of Figure 2. Considering the
Hasse diagram, we obtain the set of meet-irreducible concepts MF (A) =
{C1, C8, C9, C10, C13, C14}. Table 2 shows the fuzzy-attributes associated
with these concepts.
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R a1 a2 a3 a4 a5 a6

b1 0.6 0.2 0.2 0 1 0.6

b2 0.8 0.4 0.6 0.6 1 0.8

b3 0.6 0.6 0.2 0 0 0

Figure 2: Relation R (left side) and Hasse diagram of (M,⪯) (right side) of Example 26.

Moreover, the sets of attributes generating each meet-irreducible element
of the concept lattice, which are obtained by Definition 13, are listed below:

Atg(C1) = {a3, a4}
Atg(C8) = {a1}
Atg(C9) = {a5, a6}
Atg(C10) = {a1}
Atg(C13) = {a2}
Atg(C14) = {a2}

Taking into account these previous sets and applying the adaptation of the
attribute classification theorems we have that:

Cf = {a1, a2}
Kf = {a3, a4, a5, a6}

Our goal is to compute all possible reducts. First of all, it is important
14



MF (A) Fuzzy-attributes generating the meet-irreducible concept
C1 ϕa3,0.7, ϕa3,0.8, ϕa3,0.9, ϕa3,1.0

ϕa4,0.7, ϕa4,0.8, ϕa4,0.9, ϕa4,1.0

C8 ϕa1,0.9, ϕa1,1.0

C9 ϕa5,0.1, ϕa5,0.2, ϕa5,0.3, ϕa5,0.4, ϕa5,0.5, ϕa5,0.6, ϕa5,0.7, ϕa5,0.8, ϕa5,0.9, ϕa5,1.0

ϕa6,0.1, ϕa6,0.2, ϕa6,0.3, ϕa6,0.4, ϕa6,0.5, ϕa6,0.6

C10 ϕa1,0.7, ϕa1,0.8

C13 ϕa2,0.3, ϕa2,0.4

C14 ϕa2,0.5, ϕa2,0.6

Table 2: Fuzzy-attributes generating the meet-irreducible concepts of Example 26.

to note that the attributes a1 and a2 will be included in all reducts since
they belong to the core attribute. Now, we will focus on the selection of the
relatively necessary attributes that should be contained in each reduct. With
this purpose, we compute the following set:

GK = {Atg(C) | C ∈ MF (A) and Atg(C) ∩Kf ̸= ∅}
= {Atg(C1),Atg(C9)}
= {{a3, a4}, {a5, a6}}

It is easy to see that GK is a partition of Kf due to Atg(C1) and Atg(C9)
are disjoint subsets of Kf . This fact allows to apply Proposition 24 and
Theorem 25 to this multi-adjoint context obtaining that:

(1) Each relatively necessary attribute only generates one meet-irreducible
element of the concept lattice. According Table 2, we obtain that the
meet-irreducible concept C1 is exclusively generated by a3 and a4. In
addition, the attributes a5 and a6 only generate the concept C9.

(2) Each reduct Y of this context satisfies that card(Y ) = card(Cf ) +
card(GK) = 2 + 2 = 4. In other words, all reducts have the same
cardinality. From this context, we obtain∏

Atg(C)∈GK

card(Atg(C)) = 2 · 2 = 4
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different reducts which are shown below:

Y1 = {a1, a2, a3, a5}
Y2 = {a1, a2, a3, a6}
Y3 = {a1, a2, a4, a5}
Y4 = {a1, a2, a4, a6}

These previous reducts provide the next isomorphic concept lattices:

(M,⪯) ∼= (MY1 ,⪯) ∼= (MY2 ,⪯) ∼= (MY3 ,⪯) ∼= (MY4 ,⪯)

□

In Theorem 25 we have provided a sufficient condition in order to ensure
that the cardinality of the reducts is the same. Example 27 reveals that it
is not a necessary condition.

Example 27. From Example 15, we can ensure that either attribute a2
or a3 is needed (the attribute a1 is absolutely unnecessary) in order to ob-
tain the meet-irreducible concept C1. Hence, since a4, a6 ∈ Cf , two reducts
Y1 = {a2, a4, a6} and Y2 = {a3, a4, a6} exist. Thus, only three attributes are
needed in order to consider a concept lattice isomorphic to the original one.

Since the set GK is composed by the attributes generating C1 and C2, we
have that GK = {{a2, a3}, {a1, a2, a3, a6}}. Then, we can see clearly that GK

is not a partition of Kf although, in this case, all the reducts have the same
cardinality. □

The following example shows a particular situation where the obtained
reducts have different cardinality and the set GK is not a partition of Kf .

Example 28. Given the same framework that in Example 26, we will con-
sider a context composed by seven attributes, three objects and the relation
R included in Table 3. Due to this relation is very similar to the relation of
Example 26, the obtained concept lattice is isomorphic to the one displayed
in Figure 2.

According to the sets of attributes generating each meet-irreducible ele-
ment of the concept lattice:

Atg(C1) = {a6, a7}
Atg(C8) = {a1}
Atg(C9) = {a4, a5, a6}
Atg(C10) = {a1}
Atg(C13) = {a2}
Atg(C14) = {a2}

16



Table 3: Definition of R

R a1 a2 a3 a4 a5 a6 a7

b1 0.6 0.2 0.2 1 0.6 0.2 0

b2 0.8 0.4 0.4 1 0.8 0.6 0.6

b3 0.6 0.6 0.2 0 0 0.2 0

and considering the attribute classification shown in Propositions 16, 17
and 19, we obtain that:

Cf = {a1, a2}
Kf = {a4, a5, a6, a7}
If = {a3}

From the previous classification, it is easy to see that attributes a1 and
a2 will be contained in all reducts and the attribute a3 will be not considered
in the construction process of reducts.

In order to obtain the whole set of meet-irreducible concepts by means
of reducts, we need to choose an attribute of Atg(C1) and another one of
Atg(C9). Note that, the set GK = {Atg(C1),Atg(C9)} is not a partition of
Kf , since Atg(C1) ∩ Atg(C9) = {a6} ≠ ∅. As a consequence, the size of
reducts will depend on the selected attributes. The obtained reducts are listed
below:

Y1 = {a1, a2, a6}
Y2 = {a1, a2, a4, a7}
Y3 = {a1, a2, a5, a7}

□

Now, we will provide a lower bound and an upper bound of the cardi-
nality of every reduct.

Proposition 29. Given GC
K = {Atg(C) | C ∈ MF (A) such that Atg(C)∩

Kf ̸= ∅ and Atg(C)∩Cf = ∅} and any reduct Y of the context (A,B,R, σ).
The cardinality of the set Y can be bounded as follows:

card(Cf ) ≤ card(Y ) ≤ card(Cf ) + card(GC
K)

17



Proof : The first inequality holds because of Y is a reduct of the context
(A,B,R, σ) and, therefore, Cf ⊆ Y .

In order to obtain the second inequality, we consider the set MF (A) =
{C1, . . . , Cn} and we define the mapping:

H : Y \ Cf → GC
K

as H(a) = Atg(Ci) such that Ci ∈ MF (A), a ∈ Atg(Ci), Atg(Ci)
⋂
Y = {a}

and if more than one concept satisfying the previous conditions exist, we
will consider the concept with the smallest subindex. Now, we will prove
that H is well defined, that is, H(a) is an element in GC

K . Given a ∈ Y \Cf ,
since Y is a reduct and a /∈ Cf , we have that a ∈ Kf . Consequently, by
Proposition 23, there exists at least a ∧-irreducible element C ∈ MF (A) such
that a ∈ Atg(C). In addition, if {a} ⊊ Atg(C)

⋂
Y for each C ∈ MF (A)

with a ∈ Atg(C), then we can conclude that the set Y \ {a} is a consistent
set, which is a contradiction since Y is a reduct. Therefore, we can always
find a concept C ∈ MF (A) such that a ∈ Atg(C) and {a} = Atg(C)

⋂
Y .

Hence, since only one is considered when more than one concept satisfy the
previous conditions, we can ensure that this mapping is well defined.

Furthermore, if a ̸= a′ then H(a) ̸= H(a′), because of if H(a) = H(a′),
then Atg(C)

⋂
Y = {a, a′} which is a contradiction. As a consequence, H

is an injective function and we can conclude that card(Y \Cf ) ≤ card(GC
K)

or, equivalently, card(Y ) ≤ card(Cf ) + card(GC
K). □

From the last proposition, the following corollary is obtained.

Corollary 30. Given GK = {Atg(C) | C ∈ MF (A) and Atg(C) ∩Kf ̸=
∅} and any reduct Y of the context (A,B,R, σ). Then, the following chain
is always satisfied:

card(Cf ) ≤ card(Y ) ≤ card(Cf ) + card(GK)

Observe that, since GC
K ⊆ GK the upper approximation given in Propo-

sition 29 is better than the one given in Corollary 30, in general.
In addition, when GK is a partition of Kf then each Atg(C) ∈ GK

satisfies, by Proposition 24, that Atg(C) ∩ Cf = ∅. Therefore, if GK is a
partition of Kf , the equality GC

K = GK holds, which shows in this case that
the approximations given in Proposition 29 and Corollary 30 are equals.
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Example 31. Returning to Example 15, we will see that both reducts Y1

and Y2 satisfy the inequalities in Proposition 29 and Corollary 30. Taking
into account the definitions of the sets GK and GC

K, we obtain that:

GK = {Atg(C1),Atg(C2)} = {{a2, a3}, {a1, a2, a3, a6}}
GC
K = {Atg(C1)} = {{a2, a3}}

Considering the reducts Y1 = {a2, a4, a6} and Y2 = {a3, a4, a6}, the following
chains of inequalities hold:

2 = card(Cf ) ≤ card(Y1) = card(Y2) ≤ card(Cf ) + card(GC
K) = 3

2 = card(Cf ) ≤ card(Y1) = card(Y2) ≤ card(Cf ) + card(GK) = 4

Clearly, the set GC
K provides a more accurate upper bound with respect to

the cardinality of the reducts than the set GK, as we mentioned above. □

We have considered the sets GK and GC
K above, in which the unnecessary

attributes are included. We will finish this section presenting an interesting
property arising when the attributes of If are removed from GC

K . In order
to present this property, we will define the following set:

GC,I
K = {Atg(C) \ If | Atg(C) ∈ GC

K}

From now on, the elements belonging to GC,I
K will be denoted as Atg(C)K .

Obviously, the equality card{GC
K} = card{GC,I

K } holds. The following result
shows a specific case in which we can easily determine the cardinality of the
minimal reducts, and the number of different minimal reducts of a multi-
adjoint context.

Proposition 32. If
⋂

GC,I
K ̸= ∅ then there exists a reduct Y such that

card(Y ) = card(Cf ) + 1 and, therefore, Y is a minimal reduct.
Moreover, the number of minimal reducts of the multi-adjoint context is

card{
⋂

GC,I
K }.

Proof : If
⋂

GC,I
K ̸= ∅ then, there exists a0 ∈

⋂
GC,I
K such that a0 ∈ Kf and

a0 ∈ Atg(C) for all Atg(C) ∈ GC
K . Considering the subset Y = Cf

⋃
{a0},

we obtain all ∧-irreducible elements of the concept lattice and so, an iso-
morphic concept lattice to the original one. Consequently, the subset Y is
a consistent set of the context. In addition, let us prove that Y is a reduct.

Since, by definition, we cannot remove any attribute in Cf , we focus
the attention on a0. Due to a0 ∈ Kf , by Proposition 23, there exists a
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meet-irreducible concept C, such that a0 ∈ Atg(C), Atg(C) ∩ Cf = ∅
and Atg(C) ∩ Kf ̸= ∅. Therefore, by the definition of Y , the concept
C is not generated by other attribute different from a0 and so, the set
Y \ {a0} is not consistent. Consequently, the subset Y is a reduct and
card(Y ) = card(Cf ) + 1.

On the other hand, the reduct Y is minimal since we cannot build a
reduct considering a smaller number of attributes. Moreover, the num-
ber of different minimal reducts that we can build in this way will be
card{

⋂
GC,I
K }. □

4. Reducts in the classical case

In this section, we will recall the attribute reduction theory in formal
concept analysis in the classical case, we will consider the adaptation of
the set Atg(C) (Definition 13) to this particular case and we will present
different interesting properties.

Taking into account the irreducible elements of a concept lattice, Ganter
andWille proved several results about attribute and object reduction in [14].
The following result obtained from the ones given in [14] and introduced
in [19] characterizes the ∧-irreducible elements of B(A,B,R).

Proposition 33 ([19]). Let (A,B,R) be a formal context. The set of ∧-
irreducible elements of the concept lattice B(A,B,R) is:

MF (A) =
{
(a↓, a↓↑) | a↓ ̸=

⋂
{a↓i | a↓ ⊂ a↓i }

}
The absolutely necessary, relatively necessary and absolutely unneces-

sary attributes are characterized from the ∧-irreducible elements of B(A,B,R)
as the following theorem shows.

Theorem 34 ([19]). Given a formal context (A,B,R), the following equiv-
alences are obtained:

1. a ∈ If if and only if (a↓, a↓↑) ̸∈ MF (A).

2. a ∈ Kf if and only if (a↓, a↓↑) ∈ MF (A) and there exists a1 ∈ A,

a1 ̸= a, such that (a↓1, a
↓↑
1 ) = (a↓, a↓↑).

3. a ∈ Cf if and only if (a↓, a↓↑) ∈ MF (A) and (a↓1, a
↓↑
1 ) ̸= (a↓, a↓↑), for

all a1 ∈ A, a1 ̸= a.
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When we consider FCA in the classical framework, each attribute of our
context generates only one concept (unlike it happens when we are working
in a fuzzy framework), this fact gives rise to remarkable differences to obtain
reducts.

Obviously, in a similar way to the fuzzy case, all the reducts contain
all absolutely necessary attributes. The differences between two different
reducts are given by the choice of the relatively necessary attributes, which
are shown in the following.

Firstly, we will adapt Definition 13 to the classical case.

Definition 35. Given a context (A,B,R) and a concept C of (M,⪯), we
define the set of attributes generating C as:

Atg(C) = {a ∈ A | (a↓, a↓↑) = C}

Taking into account this definition, Theorem 34 can be rewritten as
follows.

Proposition 36. Given a formal context (A,B,R), the following equiva-
lences are obtained:

1. a ∈ If if and only if it does not exist a concept C ∈ MF (A) such that
a ∈ Atg(C).

2. a ∈ Kf if and only if there exists C ∈ MF (A) such that a ∈ Atg(C)
and card(Atg(C)) > 1.

3. a ∈ Cf if and only if there exists C ∈ MF (A) such that a ∈ Atg(C)
and card(Atg(C)) = 1.

The following result is a direct consequence of the fact that each at-
tribute of the context generates only one concept of the lattice.

Corollary 37. If C is a meet-irreducible concept and Atg(C) ∩ Kf ̸= ∅,
then Atg(C) ⊆ Kf .

Observe that in the fuzzy case this result does not hold, in general.
It can be seen in Example 15, where Atg(C1) ∩ Kf = {a2, a3} ⊆ Kf but
Atg(C2) ⊈ Kf , since a1, a6 ∈ Atg(C2) satisfying that a1 ∈ If and a6 ∈ Cf .

The next results also reveal other important differences found in the
classical framework. The proofs of these propositions are direct from the
previous results, hence, they will be omitted.
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Proposition 38. Given a meet-irreducible concept C, we have that Atg(C)∩
Cf = ∅ if and only if Atg(C) ⊆ Kf .

Proposition 39. The set GK = {Atg(C) | C ∈ MF (A) and Atg(C) ⊆
Kf} is always a partition of Kf .

As a consequence of the previous results, we can deduce that the car-
dinality of the reducts of a context (A,B,R) in the classical case is always
the same, that is, all the reducts have composed by the same number of
attributes.

Proposition 40. Given GK = {Atg(C) | C ∈ MF (A,B,R) and Atg(C) ⊆
Kf} and any reduct Y of the context (A,B,R). Then, the following equality
is always satisfied:

card(Y ) = card(Cf ) + card(GK)

Proof : Since GK is a partition of Kf (Proposition 39), the equality straight-
forwardly follows from Theorem 25. □

This last result is the main difference that we find when we compare
the construction of reducts in the classical and in the fuzzy case. This fact
shows also the main difficulty in order to build the reducts in the fuzzy case,
in particular, in the multi-adjoint concept lattice framework.

5. Conclusions and future work

This paper analyzes the process of constructing reducts in the multi-
adjoint concept lattice framework, emphasizing the relevance of the selection
of relatively necessary attributes for building reducts. In order to carry
out this work, we have studied the attributes that generate ∧-irreducible
concepts and several properties of this kind of attributes, considering the
attribute classification theorems introduced in [8].

In addition, an adaptation of the attribute classification theorems, based
on the definition of the attribute generating meet-irreducible concepts, has
been presented. This adaptation provides a simplification of the original
theorems, since makes them easier to understand and apply.

A study about the cardinality of reducts has provided a sufficient condi-
tion to guarantee all reducts of a multi-adjoint context have the same car-
dinality. Moreover, we have also determined a lower and an upper bound
of the cardinality for any reduct.
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All the results included in this work have been clarified by means of
illustrative examples. Finally, the introduced results have been considered
in the classical case from which we have obtained, for example, that all the
reducts have the same cardinality and what is this value. This study will
be essential in order to compute the reducts in the multi-adjoint concept
lattice framework and also in other (fuzzy) FCA frameworks. Moreover, we
will study in the future how these results can be used in (fuzzy) RST.

Furthermore, we will study more properties in order to know how we
should select the relatively necessary attributes, what is the most efficient
way to perform this process or how we can get reducts with a minimal
number of attributes. Moreover, we are interested in obtaining an efficient
mechanism to compute all possible reducts for any multi-adjoint context,
identifying the sets with minimal number of attributes.
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[4] R. Bělohlávek. Concept lattices and order in fuzzy logic. Annals of Pure and Applied
Logic, 128:277–298, 2004.
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