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M. Eugenia Cornejo, Jesús Medina, Eloı́sa Ramı́rez-Poussa
Department of Mathematics, University of Cádiz, Spain

Email: {mariaeugenia.cornejo,jesus.medina,eloisa.ramirez}@uca.es

Abstract

Implications pairs, adjoint pairs and adjoint triples provide general residuated
structures considered in different mathematical theories. In this paper, we carry
out a deep study on the operators involved in these structures, showing how they
are characterized by means of the irreducible elements of a complete lattice.
Moreover, the structure of each class of these operators will be analyzed. As a
consequence, the use of these operators in real problems will be more tractable,
fostering their consideration as basic and useful operators for providing, for in-
stance, preferences among attributes and objects in a given database.
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1. Introduction

Adjoint triples arise as an interesting generalization of t-norms and their
residuated implications, since they preserve their main properties and retain only
the minimal mathematical requirements for guaranteeing operability. Specif-
ically, they are tuples composed of an adjoint conjunctor and two residuated
implications. The fact of requiring few restrictions broadens considerably the
fields of application of adjoint triples, for example, they can be used in non-
commutative and/or non-associative environments. Undoubtedly, knowing in

⋆Partially supported by the the 2014-2020 ERDF Operational Programme in collaboration
with the State Research Agency (AEI) in project TIN2016-76653-P, and with the Department
of Economy, Knowledge, Business and University of the Regional Government of Andalusia.
in project FEDER-UCA18-108612, and by the European Cooperation in Science & Technology
(COST) Action CA17124.
⋆⋆Corresponding author.

Preprint submitted to Elsevier 30 de diciembre 2020



depth these operators will allow us to solve a larger number of real problems,
which clearly highlight the importance of studying this kind of operators. In ad-
dition, these operators were considered for the first time in logic programming, in
order to present a fuzzy general framework in this theory. Due to different adjoint
triples were used in the aforementioned framework, it was called multi-adjoint
logic programming [31, 32]. Multi-adjoint logic programming was extended to
a non-monotonic framework in [6, 7]. Following this philosophy, adjoint triples
were introduced in two mathematical theories for analyzing databases, formal
concept analysis and rough set theory, giving rise to multi-adjoint concept lat-
tices and multi-adjoint fuzzy rough sets [14, 15, 30]. In addition, these opera-
tors were considered in fuzzy relation equations providing a new extension of
these equations [8, 19, 20], which allows to solve more general problems. Re-
cently, adjoint triples have been also considered in fuzzy mathematical morphol-
ogy [1, 2, 28]. For example, they were considered in [28] in order to extend
the definition of fuzzy relational erosions and dilations to handle membership
values. The number of mathematical theories, in which adjoint triples has been
applied, also justifies the study of these operators.

An interesting study on adjoint triples which shows important properties of
these operators was carried out in [9]. An intense comparison among different
general (non-commutative) algebraic structures such as sup-preserving aggrega-
tions [3], quantales [5, 25], u-norms [27], uninorms [22, 35] and general impli-
cations considered in extended-order algebras [17, 18, 24], was given in [12].
Specifically, it was proven that the aforementioned operators are particular cases
of the adjoint conjunctors, when they have a residuated implication.

It is worth noting that it is not always necessary to consider all the operators
that make up an adjoint triple [21]. For instance, only the residuated implications
are needed in order to define the concept-forming operators within the theory
of fuzzy formal concept analysis. Whereas in the generalization of rough set
theory given by multi-adjoint object-oriented concept lattices and multi-adjoint
property-oriented concept lattices [29], the adjoint conjunctor and only one resid-
uated implication are used to define concept-forming operators. Therefore, it is
also interesting the study of these operators by pairs, that is, implications pairs
and adjoint pairs [12].

The goal of this paper is to know better implications pairs, adjoint pairs and
adjoint triples, which will lead us consequently to know better other operators
generalized by them. This paper characterizes implications pairs, adjoint pairs
and adjoint triples, explaining how they are composed of and how they are related
among them. Moreover, a hierarchy among them will be established and the
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obtained algebraic structure will be studied. This characterization together with
the hierarchy provides some relevant advantages in real applications. Different
examples are included in order to illustrate the developed theory.

The paper ir organized as follows. Section 2 includes some preliminary no-
tions related to lattice theory. Section 3 provides the main notions and properties
associated with implications pairs, adjoint pairs and adjoint triples. The charac-
terization of these operators is introduced in Section 4. The algebraic structure
formed by these operators is analyzed in Section 5. The paper finishes with some
conclusions and prospects for future work.

2. Lattice theory

Lattice theory is an interesting branch of modern algebra, which has gained
a lot of popularity since it provides a unifying framework in many mathematical
disciplines [4]. A brief summary with several notions and properties related to
lattice theory will be presented in order to make the paper self-contained.

From now on, we will consider a lattice (L,⪯) where ∧,∨ are the meet and
the join operators. Given an arbitrary subset X ⊆ L, we will denote the supremum
X as either sup(X) or

∨
X and the infimum of X as either inf(X) or

∧
X.

Definition 1 ([16]). Let (L,⪯) be a lattice and M ⊆ L a non-empty subset. Then
(M,⪯) is a sublattice of (L,⪯), if for each a, b ∈ M we have that a ∨ b ∈ M and
a ∧ b ∈ M.

Lemma 2 ([16]). A complete join (meet) semilattice (L,⪯) with a minimum ele-
ment (maximum element) is a complete lattice.

Now, we present the notion of join-irreducible element which will play an
important role in this paper.

Definition 3 ([16]). Given a lattice (L,⪯) and an element x ∈ L verifying that:

1. If L has a bottom element ⊥, then x , ⊥.
2. If x = y ∨ z, then x = y or x = z, for all y, z ∈ L.

we call x join-irreducible (∨-irreducible) element of L. Condition (2) is equiva-
lent to

2′ If y < x and z < x, then y ∨ z < x, for all y, z ∈ L.

Hence, if x is ∨-irreducible, then it cannot be represented as the supremum of
strictly smaller elements. A meet-irreducible (∧-irreducible) element of L is
defined dually.
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Note that, in a finite lattice, each element is equal to the supremum of join-
irreducible elements [16]. The next definition shows when the decomposition of
an element of a lattice as the supremum of join-irreducible elements is irredun-
dant.

Definition 4 ([4]). Given a lattice (L,⪯) and an element x ∈ L, if there are join-
irreducible elements y1, y2, . . . , yn, such that x = y1 ∨ y2 ∨ · · · ∨ yn, then we
say that x has a finite ∨-decomposition. Moreover, if for each i ∈ {1, . . . , n},
x , y1 ∨ . . . yi−1 ∨ yi+1 ∨ · · · ∨ yn, then the decomposition is called irredundant,
and we say that x has an irredundant finite ∨-decomposition.

In the following, we recall the notion of descending chain condition.

Definition 5 ([16]). Let (P,≤) be an ordered set. We say that P satisfies the
descending chain condition, if given any sequence · · · ≤ xn ≤ · · · ≤ x2 ≤ x1 of
elements of P, there exists k ∈ N such that xk = xk+1 = . . . . The dual of the
descending chain condition is the ascending chain condition.

Specifically, in a lattice satisfying the descending chain condition, each ele-
ment of the lattice can be expressed from all join-irreducible elements lesser or
equal than it.

Proposition 6 ([16]). Let (L,⪯) be a lattice which satisfies the descending chain
condition and J(L) be the set of join-irreducible elements of the lattice. Then,
the following statement holds for all a ∈ L:

a =
∨
{x ∈ J(L) | x ⪯ a}

A dual result related to the meet-irreducible elements of a lattice satisfying
the ascending chain condition can be easily obtained.

The following technical result of lattices satisfying the ascending chain con-
dition will be useful at the end of this section.

Proposition 7 ([16]). If (L,⪯) is a lattice satisfying the ascending chain condi-
tion, then for every non-empty subset A of L there exists a finite subset F of A
such that

∨
A =
∨

F.

Another definition which will play a fundamental role in the main results of
this paper is the notion of distributive lattice.
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Definition 8 ([16]). A lattice (L,⪯) is called distributive if the following equal-
ity is satisfied for all x, y, z ∈ L:

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)

Observe that the above condition is equivalent to its dual expression:

x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)

A characterization of non-distributive lattices, from the lattices M3 and N5

(see Figure 1), was also given in [16].

Theorem 9 ([16]). A lattice (L,⪯) is non-distributive if and only if M3 or N5 is
a sublattice of (L,⪯).
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Figure 1: Examples of non distributive lattices: M3 (left side) and N5 (right side)

The next results show interesting properties related to the notion of irredun-
dant finite ∨-decomposition in distributive lattices.

Lemma 10 ([4]). In a distributive lattice, the representation of an element as an
irredundant finite ∨-decomposition is unique.

If the descending chain condition also holds, then the existence of such de-
composition for each element of the lattice can be proven. Dually, if the ascend-
ing chain condition is satisfied.

Theorem 11 ([4]). In a distributive lattice which satisfies the descending chain
condition, each element has a unique irredundant finite ∨-decomposition.

Finally, we present a property associated with the join-irreducible elements
of a distributive lattice.
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Lemma 12 ([4]). In a distributive lattice (L,⪯), if p is a join-irreducible element

and p ⪯
n∨

i=1

xi then there exists k ∈ {1, . . . , n} such that p ⪯ xk.

Notice that, applying Proposition 7, we obtain a similar property to the one
given in Lemma 12 to the infinite case.

Lemma 13. In a distributive lattice satisfying the ascending chain condition
(L,⪯), if p is a join-irreducible element and p ⪯

∨
i∈I

xi, then there exists i ∈ I

such that p ⪯ xi.

A dual property to the one given in the previous lemma is verified by the
meet-irreducible elements of a distributive lattice.

3. Implications pairs, adjoint pairs and adjoint triples

Adjoint triples are a generalization of triangular norms and their residuated
implications. These operators play a crucial role as basic calculus operators
in different frameworks such as multi-adjoint logic programming, multi-adjoint
concept lattices, multi-adjoint fuzzy rough sets and multi-adjoint fuzzy relation
equations. This fact is due to adjoint triples increase the flexibility of these previ-
ous frameworks, for example, when conjunctors are required to be neither com-
mutative nor associative, which is a worthy feature nowadays. The formal defi-
nition of adjoint triple is given in the following definition.

Definition 14. Let (P1,≤1), (P2,≤2), (P3,≤3) be posets and &: P1 × P2 → P3,
↙ : P3 × P2 → P1,↖ : P3 × P1 → P2 be mappings. We say that (&,↙,↖) is an
adjoint triple with respect to (P1,≤1), (P2,≤2), (P3,≤3) if the following double
equivalence is satisfied:

x ≤1 z↙ y iff x & y ≤3 z iff y ≤2 z↖ x (1)

for all x ∈ P1, y ∈ P2 and z ∈ P3. The previous double equivalence is called
adjoint property.

The following properties corresponding to the operators &, ↙ and ↖ are
obtained as a direct consequence of the adjoint property.

Proposition 15 ([12]). Let (&,↙,↖) be an adjoint triple with respect to the
posets (P1,≤1), (P2,≤2) and (P3,≤3), then the following properties are satisfied:
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1. & is order-preserving on both arguments.
2. ↙ and↖ are order-preserving on the first argument and order-reversing

on the second argument.
3. ⊥1 & y = ⊥3, ⊤3 ↙ y = ⊤1, for all y ∈ P2, when (P1,≤1,⊥1,⊤1) and

(P3,≤3,⊥3,⊤3) are bounded posets.
4. x &⊥2 = ⊥3 and ⊤3 ↖ x = ⊤2, for all x ∈ P1, when (P2,≤2,⊥2,⊤2) and

(P3,≤3,⊥3,⊤3) are bounded posets.
5. z ↖ ⊥1 = ⊤2 and z ↙ ⊥2 = ⊤1, for all z ∈ P3, when (P1,≤1,⊥1,⊤1) and

(P2,≤2,⊥2,⊤2) are bounded posets.
6. When the supremum and the infimum exist:

(a)

∨
x′∈X

x′
& y =

∨
x′∈X

(x′& y), for all X ⊆ P1 and y ∈ P2.

(b)

∧
z′∈Z

z′
↙ y=

∧
z′∈Z

(z′ ↙ y), for any Z ⊆ P3 and y ∈ P2.

(c) x &

∨
y′∈Y

y′
 =∨

y′∈Y

(x & y′), for all Y ⊆ P2 and x ∈ P1.

(d)

∧
z′∈Z

z′
↖ x=

∧
z′∈Z

(z′ ↖ x), for all Z ⊆ P3 and x ∈ P1.

(e) z↙

∨
y′∈Y

y′
 =∧

y′∈Y

(z↙ y′), for all Y ⊆ P2 and z ∈ P3.

(f) z↖

∨
x′∈X

x′
 =∧

x′∈X

(z↖ x′), for all X ⊆ P1 and z ∈ P3.

7. z↙ y = max{x ∈ P1 | x & y ≤3 z}, for all y ∈ P2 and z ∈ P3.
8. z↖ x = max{y ∈ P2 | x & y ≤3 z}, for all x ∈ P1 and z ∈ P3.
9. x & y = min{z ∈ P3 | x ≤1 z ↙ y} = min{z ∈ P3 | y ≤2 z ↖ x}, for all

x ∈ P1 and y ∈ P2.

Observe that the properties shown in Proposition 15 are always satisfied if
(P1,≤1), (P2,≤2) and (P3,≤3) are complete lattices. Indeed, in this case, by items
6(a) and 6(b) in Proposition 15, the Freyd’s adjoint functor theorem [26, 33]
shows that the mappings &y : P1 → P3 and ↙y : P3 → P1, defined for each
x ∈ P1, z ∈ P3 as &y(x) = x & y and↙y (z) = z ↙ y, form an adjunction for all
y ∈ P2. Similarly, items 6(c) and 6(d) implies that x &: P2 → P3 and↖x : P3 →

P2, defined for each y ∈ P2, z ∈ P3 as x &(y) = x & y and↖x (z) = z ↖ y, also
form an adjunction for all x ∈ P1 in the framework of complete lattices. The
following result complements this comment.
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Proposition 16. Given the complete lattices (L1,⪯1), (L2,⪯2), (L3,⪯3), an arbi-
trary operator &: L1 × L2 → L3 and the mappings↙ : L3 × L2 → L1,↖ : L3 ×

L1 → L2, defined as z↙ y = sup{x′ ∈ L1 | x′& y ⪯3 z} and z↖ x = sup{y′ ∈ L2 |

x & y′ ⪯3 z}, respectively, for all x ∈ L1, y ∈ L2 and z ∈ L3, the next statements
are equivalent:

1. (&,↙,↖) is an adjoint triple with respect to (L1,⪯1), (L2,⪯2), (L3,⪯3).
2. For all x ∈ L1, X ⊆ L1, y ∈ L2 and Y ⊆ L2,∨

x′∈X

x′
& y =

∨
x′∈X

(x′& y) and x &

∨
y′∈Y

y′
 =∨

y′∈Y

(x & y′)

3. z↙ y = max{x′ ∈ L1 | x′& y ⪯3 z} and z↖ x = max{y′ ∈ L2 | x & y′ ⪯3 z}
for all x ∈ L1, y ∈ L2 and z ∈ L3, and & is order-preserving on both
arguments.

Proof. The equivalence “(1) if and only if (2)” follows from Freyd’s adjoint
functor theorem, considering the mappings commented above. Hence, the proof
will be based on item 3. First of all, “(2) implies (3)” will be proved and then
the proof will finish with the proof of “(3) implies (1)”. Consider the operators
↙ : L3 × L2 → L1, ↖ : L3 × L1 → L2, defined as z ↙ y = sup{x′ ∈ L1 |

x′& y ⪯3 z} and z ↖ x = sup{y′ ∈ L2 | x & y′ ⪯3 z}, respectively, for all x ∈ L1,
y ∈ L2 and z ∈ L3. In addition, for each y ∈ L2 and z ∈ L3, we define the sets
X = {x′ ∈ L1 | x′& y ⪯3 z} and Y = {y′ ∈ L2 | x & y′ ⪯3 z}.

(2) implies (3): Taking into account Statement (2) and the definitions of the
operators ↙, ↖, we can ensure that the following chains of inequalities
hold, for all x ∈ L1, y ∈ L2 and z ∈ L3:

(z↙ y) & y =

∨
x′∈X

x′
& y =

∨
x′∈X

(x′& y) ⪯3 z

x &(z↖ x) = x &

∨
y′∈Y

y′
 =∨

y′∈Y

(x & y′) ⪯3 z

Therefore, z ↙ y ∈ X and z ↖ x ∈ Y . As a consequence, we deduce that
the equalities z ↙ y = max{x′ ∈ L1 | x′& y ⪯3 z} and z ↖ x = max{y′ ∈
L2 | x & y′ ⪯3 z} are satisfied, for all x ∈ L1, y ∈ L2 and z ∈ L3.

Now, we will prove that & is an order-preserving operator on the first
argument. Given x1, x2 ∈ L1, suppose that x1 ⪯1 x2. Applying Statement
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(2) and the supremum property, we can deduce that x1 & y ⪯3 (x1 & y) ∨
(x2 & y) = (x1 ∨ x2) & y = x2 & y, for all y ∈ L2. Following a similar
reasoning, we obtain the inequality x & y1 ⪯3 x & y2, where x ∈ L1 and
y1, y2 ∈ L2, verifying that y1 ⪯2 y2. Hence, & is order-preserving on both
arguments.

(3) implies (1): We will prove the double equivalence x ⪯1 z↙ y iff x & y ⪯3 z
iff y ⪯2 z↖ x holds, where x ∈ L1, y ∈ L2 and z ∈ L3.

Suppose that x ⪯1 z↙ y, as & is order-preserving on the first argument, we
obtain that x & y ⪯3 (z↙ y) & y holds. In addition, we have that z↙ y ∈ X
because z ↙ y = max{x′ ∈ L1 | x′& y ⪯3 z}. Hence, (z ↙ y) & y ⪯3 z and
consequently x & y ⪯3 z.

Conversely, assume that x & y ⪯3 z. Clearly, x ∈ X. By Statement (3),
z↙ y = max{x′ ∈ L1 | x′& y ⪯3 z} and therefore, x ⪯1 z↙ y.

The another equivalence follows similarly. Therefore, we conclude that
(&,↙,↖) is an adjoint triple with respect to (L1,⪯1), (L2,⪯2), (L3,⪯3). □

The most usual adjoint triples with respect to ([0, 1],≤) are those defined
from the Gödel, product and Łukasiewicz t-norms together with their residu-
ated implications. Due to these t-norms are commutative, we can ensure that
↙G=↖G,↙P=↖P and↙Ł=↖Ł. The mentioned adjoint triples are given below:

&G(x, y) = min{x, y} z↙G y =

1 if y ≤ z
z otherwise

&P(x, y) = x · y z↙P y = min{1, z/y}

&Ł(x, y) = max{0, x + y − 1} z↙Ł y = min{1, 1 − y + z}

Other general examples of adjoint triples were given for instance in [9].
There exist different cases in which considering only pairs of operators satis-
fying an adjoint property is sufficient and provides more flexibility [21]. For
instance, the multi-adjoint concept lattice framework is a particular environment
in which it is not necessary to assume adjoint triples but pairs. Specifically, the
basic operators needed in the definition of the concept-forming operators [10, 30]
are Galois implications pairs, as was justified in [21]. These operators and other
possible pairs are introduced below.

Definition 17. Let (P1,≤1), (P2,≤2), (P3,≤3) be posets and &: P1 × P2 → P3,
↙ : P3 × P2 → P1,↖ : P3 × P1 → P2 be mappings. We say that:
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• (&,↙) is a right adjoint pair with respect to (P1,≤1), (P2,≤2), (P3,≤3) if
the next equivalence is satisfied, for all x ∈ P1, y ∈ P2 and z ∈ P3:

x ≤1 z↙ y iff x & y ≤3 z

• (&,↖) is a left adjoint pair with respect to (P1,≤1), (P2,≤2), (P3,≤3) if
the next equivalence is verified, for all x ∈ P1, y ∈ P2 and z ∈ P3:

x & y ≤3 z iff y ≤2 z↖ x

• (↙,↖) is a Galois implications pair with respect to (P1,≤1), (P2,≤2),
(P3,≤3) if the next equivalence is satisfied, for all x ∈ P1, y ∈ P2 and
z ∈ P3:

x ≤1 z↙ y iff y ≤2 z↖ x (2)

Interesting properties related to left/right adjoint pairs and Galois implica-
tions pairs are deduced from these previous equivalences [12]. In the follow-
ing, we will show properties related to Galois implications pairs obtained from
Equivalence (2). Note that, similar properties can be obtained for left/right ad-
joint pairs in an analogous way.

Proposition 18 ([12]). Let (↙,↖) be a Galois implications pair with respect to
the posets (P1,≤1), (P2,≤2) and (P3,≤3), then the next properties are verified:

1. ↙ and↖ are order-reversing on the second argument.
2. z ↖⊥1 =⊤2 and z ↙⊥2 =⊤1 for all z ∈ P3, when (P1,≤1,⊥1,⊤1) and

(P2,≤2,⊥2,⊤2) are bounded posets.
3. x ≤1 z↙ (z↖ x) and y ≤2 z↖ (z↙ y), for all x ∈ P1, y ∈ P2, z ∈ P3.
4. z↙ y = max{x ∈ P1 | y ≤2 z↖ x}, for all y ∈ P2 and z ∈ P3.
5. z↖ x = max{y ∈ P2 | x ≤1 z↙ y}, for all x ∈ P1 and z ∈ P3.
6. When the supremum and the infimum exist:

(a) z↙

∨
y′∈Y

y′
 =∧

y′∈Y

(z↙ y′), for all Y ⊆ P2 and z ∈ P3.

(b) z↖

∨
x′∈X

x′
 =∧

x′∈X

(z↖ x′), for all X ⊆ P1 and z ∈ P3.

The next result presents the equivalences corresponding to Galois implica-
tions pairs when (P1,≤1) and (P2,≤2) are complete lattices, which is related to
Proposition 16.
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Proposition 19. Let (L1,⪯1) and (L2,⪯2) be two complete lattices, (P3,≤3) be a
poset,↖ : P3×L1 → L2 be an arbitrary operator and↙ : P3×L2 → L1, defined
as z ↙ y = sup{x′ ∈ L1 | y ⪯2 z ↖ x′}, for all y ∈ L2 and z ∈ P3. The following
statements are equivalent:

1. (↙,↖) is a Galois implications pair with respect to (L1,⪯1), (L2,⪯2),
(P3,≤3).

2. z↖

∨
x′∈X

x′
 =∧

x′∈X

(z↖ x′), for all X ⊆ L1 and z ∈ P3.

3. z ↙ y = max{x′ ∈ L1 | y ⪯2 z ↖ x′}, for all y ∈ L2 and z ∈ P3, and↖ is
order-reversing on the second argument.

Proof. The proof similarly follows as in Proposition 16.

The pair of operators shown in the following example forms a Galois im-
plications pair. However, these operators are not the adjoint implications of an
adjoint triple, as it was proven in [21].

Example 20. The pair (↙,↖) whose operators are defined on the complete
lattice ([0, 1],≤) as follows:

z↙ y =



1 − y
1 − z

if z ≤
1
2

and z < y√
1 − y
1 − z

if z >
1
2

and z < y

1 if z ≥ y

z↖ x =


1 − x2 · (1 − z) if z <

1
2

1 − x · (1 − z) if z ≥
1
2

for all x, y, z ∈ [0, 1], form a Galois implications pair. The authors of [21] proved
that there does not exist any conjunctor & such that (&,↙,↖) is an adjoint triple.
□

The previous properties associated with adjoint triples and Galois implica-
tions pairs will facilitate the development of the proofs and the examples carried
out throughout this paper. A more detailed study of adjoint triples, left/right
adjoint pairs and Galois implications pairs can be found in [9, 11, 12].

In the next section, we will investigate how we can define the conjunctor and
the implication operators of adjoint triples, left/right adjoint pairs and Galois
implications pairs, by using join-irreducible elements.
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4. Defining pairs and triples by using join-irreducible elements

Irreducible elements are one of the most important elements of a lattice, for
example, if a lattice satisfies the descending chain condition then the irreducible
elements form a base from which we can obtain the complete lattice. We are
interested in using this powerful property in order to provide a mechanism to
define implication and conjunctor operators, which can form Galois implications
pairs, left/right adjoint pairs and adjoint triples.

First of all, we will present the mechanism which allows us to define an im-
plication operator of a Galois implications pair. To achieve this goal, will be
fundamental to consider the infimum operator and require that each element of
the lattice have a unique irredundant finite ∨-decomposition. This last condi-
tion will be guaranteed by the descending chain condition and the distributivity
property.

Theorem 21. Let (L1,⪯1) be a distributive complete lattice satisfying the de-
scending chain condition, (L2,⪯2) a complete lattice, (P3,≤3) a poset and J(L1)
the set of join-irreducible elements of L1. For each z ∈ P3, we define the operator
z↖ : L1 → L2, for all x ∈ L1, as follows:

z↖ (x) =


⊤2 if x = ⊥1∧
p∈J(x)

fz(p) otherwise
(3)

where J(x) denotes the set of join-irreducible elements of the irredundant finite
∨-decomposition of each element x in L1, and fz : J(L1) → L2 is an order-
reversing mapping1. Then, the operator↖ : P3 × L1 → L2 defined as z ↖ x =
z↖ (x), for all z ∈ P3 and x ∈ L1, is an implication of a Galois implications pair.

Proof. First of all, we have that the mapping ↖ : P3 × L1 → L2 defined as
z↖ x = z↖ (x), for all z ∈ P3 and x ∈ L1, is well-defined since, by Theorem 11,
each element x ∈ L1 has a unique irredundant finite ∨-decomposition.

In order to demonstrate that ↖ is an implication of a Galois implications
pair, we will prove that this implication satisfies the property given in Proposi-
tion 19(3). We will see that the operator↙ : P3 × L2 → L1 defined as z ↙ y =

1Note that, the irredundant finite ∨-decomposition of an join-irreducible element p ∈ J(L1)
is the proper element p, and therefore, z↖ (p) = fz(p) for all p ∈ J(L1).
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sup{x ∈ L1 | y ⪯2 z ↖ x} is actually a maximum, for all y ∈ L2 and z ∈ P3, and
that↖ is order-reversing on the second argument.

On the one hand, we will see that the operator ↖ is order-reversing on the
second argument. That is, we will prove that if x1, x2 ∈ L1 satisfying that x1 ⪯1

x2, then z↖ x2 ⪯2 z↖ x1, for all z ∈ P3. Applying Theorem 11, we can express
x1, x2 ∈ L1 from their corresponding irredundant finite ∨-decompositions, that
is, x1 =

∨
p∈J(x1) p and x2 =

∨
q∈J(x2) q where J(x1) and J(x2) denote the sets of

join-irreducible elements of the unique irredundant finite ∨-decomposition of the
elements x1 and x2, respectively.

Suppose that x1 , ⊥1 and x2 , ⊥1. Taking into account that x1 ⪯1 x2, we
have that

∨
p∈J(x1) p ⪯1

∨
q∈J(x2) q. Clearly, the inequality p ⪯1 x1 =

∨
p∈J(x1) p

holds, for each p ∈ J(x1). Therefore, we can ensure that p ⪯1
∨

q∈J(x2) q, for all
p ∈ J(x1). Hence, by Lemma 12, for every p ∈ J(x1), there exists qp ∈ J(x2),
such that p ⪯1 qp. Since fz is an order-reversing mapping, we obtain that for
every p ∈ J(x1) there exists qp ∈ J(x2) such that fz(qp) ⪯2 fz(p). Consequently,
by using the infimum property and the definition of the operators↖ and z↖, we
have the following chain of inequalities:

z↖ x2 =
z↖ (x2) =

∧
q∈J(x2)

fz(q) ⪯2

∧
p∈J(x1)

fz(qp) ⪯2

∧
p∈J(x1)

fz(p) = z↖ (x1) = z↖ x1

Now, without loss of generality, assume that x1 = ⊥1 and x2 , ⊥1. By
Equation (3), the following equalities are obtained:

z↖ (x1) = z↖ (⊥1) = ⊤2

z↖ (x2) = z↖

 ∨
q∈J(x2)

q

 = ∧
q∈J(x2)

fz(q)

Therefore, the inequality z ↖ x2 =
z↖ (x2) ⪯2

z↖ (x1) = z ↖ x1 is verified,
for all z ∈ P3. Notice that the inequality z ↖ x2 ⪯2 z ↖ x1 is trivially obtained
when x1 = x2 = ⊥1. Hence, we can conclude that ↖ is order-reversing on the
second argument.

Finally, it remains to prove that z ↙ y = max{x ∈ L1 | y ⪯2 z ↖ x} holds,
for all y ∈ L2 and z ∈ P3. We will prove, for each y ∈ L2, that sup(X) where
X = {p ∈ J(L1) | y ⪯2 z ↖ p} is this maximum. First of all, we will prove that
sup(X) ∈ {x ∈ L1 | y ⪯2 z↖ x}. For that, we will distinguish two cases:

• If X = ∅, then sup(X) = ⊥1. Clearly, by Equation (3), we have that
the inequality y ⪯2 z ↖ ⊥1 = ⊤2 holds, for all y ∈ L2 and z ∈ P3.
Consequently, we obtain that ⊥1 ∈ {x ∈ L1 | y ⪯2 z ↖ x}, for all y ∈ L2

and z ∈ P3.
13



• If X , ∅, then sup(X) = sup{p ∈ J(L1) | y ⪯2 z ↖ p} , ⊥1 and X pro-
vides a finite ∨-decomposition of sup(X), that is, sup(X) =

∨
p∈X p. Con-

sidering the irredundant finite∨-decomposition of sup(X), that is, sup(X) =∨
p∈Λ p withΛ ⊆ X, and applying Equation (3), we have that z↖ sup(X) =

z↖ (sup(X)) =
∧

p∈Λ fz(p) =
∧

p∈Λ
z↖ (p) =

∧
p∈Λ z ↖ p and therefore,

since y ⪯2 z ↖ p holds for all p ∈ Λ, we can ensure that y ⪯2 z ↖ sup(X)
is satisfied for all y ∈ L2 and z ∈ P3. As a consequence, we obtain that
sup(X) ∈ {x ∈ L1 | y ⪯2 z↖ x}, for all y ∈ L2 and z ∈ P3.

Now, we prove that sup(X) is the greatest element in the set {x ∈ L1 | y ⪯2 z↖ x}.
Specifically, we will prove that the inequality x′ ⪯1 sup(X) is verified, for all
x′ ∈ {x ∈ L1 | y ⪯2 z↖ x}. Once again, we will distinguish two cases:

• If x′ = ⊥1, then the inequality ⊥1 ⪯1 sup(X) is trivially satisfied.

• If x′ , ⊥1, we can express x′ from its corresponding irredundant finite ∨-
decomposition, that is, x′ =

∨
p∈J(x′) p where J(x′) denotes the set of join-

irreducible elements of the unique finite irredundant ∨-decomposition of
the element x′. Taking into account that x′ ∈ {x ∈ L1 | y ⪯2 z ↖ x}, by
using Equation (3), we can deduce that:

y ⪯2 z↖ x′ = z↖ (x′) = z↖

 ∨
p∈J(x′)

p

 = ∧
p∈J(x′)

fz(p) =
∧

p∈J(x′)

z↖ (p) =
∧

p∈J(x′)

z↖ p

because z ↖ p = z↖ (p) = fz(p), for all p ∈ J(L1) and z ∈ P3. By the
infimum property, the inequality y ⪯2 z ↖ p is verifed, for all p ∈ J(x′).
Hence, we obtain that p ∈ X, for all p ∈ J(x′). Finally, by the supremum
property, we have that:

x′ =
∨

p∈J(x′)

p ⪯1

∨
x∈X

x = sup(X)

Therefore, we can conclude that z↙ y = max{x ∈ L1 | y ⪯2 z↖ x} holds, for all
y ∈ L2 and z ∈ P3. □

The following example illustrates the previous results and the requirements
given by the hypothesis. For example, it will show that the distributivity property
is mandatory.
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Figure 2: Lattices (L1,⪯1), (L2,⪯2) and poset (P3,≤3) of Example 22.

Example 22. Consider the distributive complete lattice (L1,⪯1), the complete
lattice (L2,⪯2) and the poset (P3,≤3) which are depicted in Figure 2 from left to
right, respectively. Notice that, (L1,⪯) satisfies the descending chain condition
since it is a finite lattice. Taking into account the Hasse diagram, we can ensure
that the set of join-irreducible elements of L1 is J(L1) = {x1, x2}.

Now, we will compute some particular Galois implications pairs with respect
to (L1,⪯1), (L2,⪯2), (P3,≤3). For instance, we can consider the order-reversing
mapping fz : J(L1) → L2 defined as fz(x1) = ⊥2 and fz(x2) = y1, for all z ∈ P3.
By using Equation (3) and Proposition 19(3), we can define the implication op-
erators ↖ and ↙ which are given by Table 1. In order to carry out the com-
putations corresponding to the pair (↙,↖), we have considered the irredundant
finite ∨-decompositions of the elements x1, x2 and ⊤1. Since x1 and x2 are only
obtained as supremum of themselves, we have that z ↖ x1 =

z↖ (x1) = fz(x1)
and z ↖ x2 =

z↖ (x2) = fz(x2). The irredundant finite ∨-decomposition of the
top element in L1 is ⊤1 = sup{x1, x2} and consequently, z ↖ ⊤1 =

z↖ (⊤1) =
inf{z ↖ x1, z ↖ x2} = inf{z↖ (x1), z↖ (x2)} = inf{ fz(x1), fz(x2)} = ⊥2. Finally,
applying Theorem 21, we obtain that the pair (↙,↖) displayed in Table 1 forms
a Galois implications pair.

↙ ⊥2 y1 y2 y3 ⊤2

z1 ⊤1 x2 ⊥1 ⊥1 ⊥1

z2 ⊤1 x2 ⊥1 ⊥1 ⊥1

z3 ⊤1 x2 ⊥1 ⊥1 ⊥1

⊤3 ⊤1 x2 ⊥1 ⊥1 ⊥1

↖ ⊥1 x1 x2 ⊤1

z1 ⊤2 ⊥2 y1 ⊥2

z2 ⊤2 ⊥2 y1 ⊥2

z3 ⊤2 ⊥2 y1 ⊥2

⊤3 ⊤2 ⊥2 y1 ⊥2

Table 1: Definition of Galois implications pair (↙,↖) of Example 22.
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Note that, it is not necessary to consider the same order-reversing mapping
for each z ∈ P3. For example, we can consider the previous order-reversing
mapping for z1 ∈ P3 and other different mappings for the rest of values in P3:

• fz1 : J(L1)→ L2 defined as fz1(x1) = ⊥2 and fz1(x2) = y1.

• fz2 : J(L1)→ L2 defined as fz2(x1) = ⊥2 and fz2(x2) = ⊤2.

• fz3 : J(L1)→ L2 defined as fz3(x1) = y1 and fz3(x2) = y2.

• f⊤3 : J(L1)→ L2 defined as f⊤3(x1) = y1 and f⊤3(x2) = y3.

From these mappings and following the same procedure to the previously men-
tioned, Theorem 21 and Proposition 19(3) allow us to define the Galois implica-
tions pair (w,v) shown in Table 2.

w ⊥2 y1 y2 y3 ⊤2

z1 ⊤1 x2 ⊥1 ⊥1 ⊥1

z2 ⊤1 x2 x2 x2 x2

z3 ⊤1 x1 x2 ⊥1 ⊥1

⊤3 ⊤1 ⊤1 ⊥1 x2 ⊥1

v ⊥1 x1 x2 ⊤1

z1 ⊤2 ⊥2 y1 ⊥2

z2 ⊤2 ⊥2 ⊤2 ⊥2

z3 ⊤2 y1 y2 ⊥2

⊤3 ⊤2 y1 y3 y1

Table 2: Definition of Galois implications pair (w,v) of Example 22.

It is important to mention that the complete lattice L2 is not required to be dis-
tributive. Indeed, L2 = N5 in this example. However, this requirement is manda-
tory with respect to the lattice L1, since the mapping↖ is defined from the join-
irreducible elements of L1. For example, suppose that L1 is the non-distributive
lattice M3 displayed in Figure 1. In this case, the set of join-irreducible elements
of M3 is given by J(M3) = {x1, x2, x3}. As M3 is a non-distributive lattice, we
obtain different irredundant finite ∨-decompositions of the element ⊤1. That is,
⊤1 = sup{x1, x2}, ⊤1 = sup{x1, x3} and ⊤1 = sup{x2, x3}.

Now, we will consider the order-reversing mapping fz : J(L1) → L2 defined
as fz(x1) = y1, fz(x2) = ⊥2 and fz(x3) = y3, for all z ∈ P3. Assuming the different
irredundant finite ∨-decompositions of ⊤1, we will conclude that the operator
z↖ obtained from Equation (3) is not well-defined. As a consequence,↖ is not
well-defined.

On the one hand, if we consider the irredundant ∨-decomposition ⊤1 =

sup{x1, x2}, we obtain z↖ (⊤1) = inf{ fz(x1), fz(x2)} = inf{y1,⊥2} = ⊥2. On the
other hand, if we consider the irredundant ∨-decomposition ⊤1 = sup{x1, x3}, we
have that z↖ (⊤1) = inf{ fz(x1), fz(x3)} = inf{y1, y3} = y1.
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Therefore, we can conclude that the mapping z ↖ is not well-defined and
consequently ↖ is not either. In order to avoid this problem, it is necessary to
require the distributivity property to the lattice (L1,⪯1) in Theorem 21. □

The following result shows that the counterpart of Theorem 21 holds.

Proposition 23. Let (L1,⪯1) be a distributive complete lattice satisfying the de-
scending chain condition, (L2,⪯2) a complete lattice and (P3,≤3) a poset. For
any Galois implications pair (↙,↖) with respect to (L1,⪯1), (L2,⪯2), (P3,≤3),
the implication↖ satisfies Equation (3), for all z ∈ P3.

Proof. Given an arbitrary Galois implications pair (↙,↖) with respect to (L1,⪯1

), (L2,⪯2) and (P3,≤3), using Property (2) given in Proposition 18, we obtain
that z ↖ x = ⊤2 when x = ⊥1 and z ∈ P3. From now on, we will assume
that x , ⊥1. We can express x as an irredundant finite ∨-decomposition, since
(L1,⪯1) is a distributive complete lattice satisfying the descending chain condi-
tion. Then, given J(L1) the set of join-irreducible elements of L1, we can write
x =
∨

p∈J(x) p where J(x) denotes the set of join-irreducible elements of the irre-
dundant finite ∨-decomposition of the element x. Notice that, by Theorem 11,
such decomposition is unique. By the property (6b) given in Proposition 18, we
obtain the following chain of equalities:

z↖ x = z↖

 ∨
p∈J(x)

p

 = ∧
p∈J(x)

{z↖ p} =
∧

p∈J(x)

fz(p)

where fz is an order-reversing mapping defined as fz(p) = z ↖ p, for all p ∈
J(L1) and z ∈ P3. Therefore, we can ensure that the implication ↖ satisfies
Equation (3). □

A similar result arises for the implication↙, if (L2,⪯2) is a distributive com-
plete lattice satisfying the descending chain condition.

It is important to mention that, from Theorem 21 and Proposition 23, we can
ensure that the number of Galois implications pairs which can be defined with
respect to two finite distributive complete lattices satisfying the descending chain
condition (L1,⪯1) and (L2,⪯2) and a finite poset (P3,≤3), is card(P3) × card(F ),
where F = { f : J(L1)→ L2 | f is an order-reversing mapping}.

Following an analogous strategy to the one given in Theorem 21, the con-
junctor operator of a right adjoint pair can be defined. We will also need that
each element of the lattice have a unique irredundant finite ∨-decomposition. In
this case, we will use the supremum operator instead of the infimum one.
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Theorem 24. Let (L1,⪯1) be a distributive complete lattice satisfying the de-
scending chain condition, (P2,≤2) a poset, (L3,⪯3) a complete lattice and J(L1)
the set of join-irreducible elements of L1. For each y ∈ P2, we define the operator
&y : L1 → L3, for all x ∈ L1, as follows:

&y(x) =


⊥3 if x = ⊥1∨
p∈J(x)

gy(p) otherwise (4)

where J(x) denotes the set of join-irreducible elements of the irredundant fi-
nite ∨-decomposition of the elements x in L1 and gy : J(L1) → L3 is an order-
preserving mapping2. Then, the operator &: L1 × P2 → L3 defined as x & y =
&y(x), for all x ∈ L1 and y ∈ P2, is the conjunctor of a right adjoint pair.

Proof. The proof follows similarly as in Theorem 21. □

The counterpart of Theorem 24 is also satisfied as it is shown below.

Proposition 25. Let (L1,⪯1) be a distributive complete lattice satisfying the de-
scending chain condition, (P2,≤2) a poset and (L3,⪯3) a distributive complete
lattice. For any right adjoint pair (&,↙) with respect to (L1,⪯1), (P2,≤2),
(L3,⪯3), the conjunctor & satisfies Equation (4), for all y ∈ P2.

Proof. The proof can be deduced following a completely analogous reasoning
to the one given in the proof of Proposition 23, by using Proposition 20 in [12],
which is analogous to Proposition 18 for right adjoint pair.

It is also convenient to mention that, from Theorem 24 and Proposition 25, it
is possible to guarantee the number of right adjoint pairs, which can be defined
with respect to a finite distributive complete lattice satisfying the descending
chain condition (L1,⪯1), a finite poset (P2,≤2) and a finite distributive com-
plete lattice (L3,⪯3), is card(P2) × card(G), where G = {g : J(L1) → L3 |

g is an order-preserving mapping}.
Notice that, given a poset (P1,≤1), a distributive complete lattice satisfying

the descending chain condition (L2,⪯2) and a complete lattice (L3,⪯3), we can
also define the conjunctor of a left adjoint pair &: P1× L2 → L3 in a similar way

2Note that, the irredundant finite ∨-decomposition of an join-irreducible element p ∈ J(L1)
is the proper element p, and therefore, &y(p) = gy(p) for all p ∈ J(L1).
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to the one given in Theorem 24. Consequently, we obtain analogous results to
Theorem 24 and Proposition 25 related to left adjoint pairs.

Now, we will study the case of adjoint triples. Specifically, we will present
how to define the conjunctor of an adjoint triple, by using the join-irreducible
elements of distributive complete lattices satisfying the descending chain condi-
tion.

Theorem 26. Let (L1,⪯1), (L2,⪯2) be two distributive complete lattices satisfy-
ing the descending chain condition, (L3,⪯3) a complete lattice,J(L1) andJ(L2)
the sets of join-irreducible elements of L1 and L2, respectively. For all x ∈ L1

and y ∈ L2, we define the operator &: L1 × L2 → L3 as follows:

x & y =


⊥3 if x = ⊥1 or y = ⊥2∨
p∈J(x)

∨
q∈J(y)

g(p, q) otherwise
(5)

where J(x) and J(y) denote the sets of join-irreducible elements of the irredun-
dant finite∨-decompositions of the elements x and y, respectively, and g : J(L1)×
J(L2) → L3 is an order-preserving mapping on both arguments3. Then, the op-
erator & is the conjunctor of an adjoint triple.

Proof. To begin with, it is convenient to highlight that the mapping & is well-
defined since, each element x ∈ L1 and y ∈ L2 has a unique irredundant finite
∨-decomposition. Now, we will see that the operator & is actually the conjunctor
of an adjoint triple.

From a mapping g : J(L1) ×J(L2)→ L3, which is order-preserving on both
arguments, we can define the mappings gy : J(L1) → L3 and gx : J(L2) → L3

as gy(p) =
∨

q∈J(y) g(p, q) and gx(q) =
∨

p∈J(x) g(p, q), respectively, for each x ∈
L1 \ {⊥1} and y ∈ L2 \ {⊥2}. Notice that, gy and gx are also order-preserving
mappings. In addition, for each x ∈ L1 \ {⊥1} and y ∈ L2 \ {⊥2}, we can define
the conjunctor operators &y : L1 → L3 and x&: L2 → L3 as follows:

&y(x) =


⊥3 if x = ⊥1∨
p∈J(x)

gy(p) otherwise

3Note that, the irredundant finite ∨-decomposition of an join-irreducible element is the proper
element, and therefore, p & q = g(p, q) for all (p, q) ∈ J(L1) × J(L2).
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x&(y) =


⊥3 if y = ⊥2∨
q∈J(y)

gx(q) otherwise

Since, for each x ∈ L1 \ {⊥1} and y ∈ L2 \ {⊥2}, the following equalities are
satisfied: ∨

p∈J(x)

gy(p) =
∨

p∈J(x)

∨
q∈J(y)

g(p, q)∨
q∈J(y)

gx(q) =
∨

p∈J(x)

∨
q∈J(y)

g(p, q)

we obtain that the conjunctor operator & given by Equation (5) satisfies the
chain of equalities x & y = &y(x) = x&(y), for all x ∈ L1 and y ∈ L2. Applying
Theorem 24 and its dual, we can ensure that & is the conjunctor of a right adjoint
pair and the conjunctor of a left adjoint pair. Thus, & has two adjoint implications
satisfying the adjoint property, that is, it is the conjunctor of an adjoint triple. □

The next example clarifies the mechanism developed to define conjunctors
of adjoint triples.

Example 27. We will consider the two distributive complete lattices satisfying
the descending chain condition (L1,⪯1), (L2,⪯2) and the complete lattice (L3,⪯3)
displayed in Figure 3. From the Hasse diagrams given in Figure 3, it is easy to
see that the set of join-irreducible elements of L1 and L2 areJ(L1) = {x1, x2} and
J(L2) = {y1,⊤2}, respectively.
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Figure 3: Lattices (L1,⪯1), (L2,⪯2) and (L3,⪯3) of Example 27.

For instance, we can obtain an adjoint triple from the order-preserving map-
ping g : J(L1)×J(L2)→ L3, defined as g(x1, y1) = z1, g(x2, y1) = z2, g(x1,⊤2) =
g(x2,⊤2) = z3. In order to compute the conjunctor & by using Equation (5), we
need to consider the irredundant finite ∨-decompositions of the elements x1, x2,
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⊤1, y1 and ⊤2. Taking into account that x1 and y1 can only be expressed as
supremum of themselves, we have that x1 & y1 = g(x1, y1) = z1. A similar rea-
soning is carried out to compute x1 &⊤2, x2 & y1 and x2 &⊤2. On the other hand,
we have that the irredundant finite ∨-decomposition of the top element in L1 is
⊤1 = sup{x1, x2} and consequently:

⊤1 & y1 = sup{g(x1, y1), g(x2, y1)} = z3

⊤1 &⊤2 = sup{g(x1,⊤2), g(x2,⊤2)} = z3

Applying Equation (5) and Proposition 16(3), we obtain the triple (&,↙,↖)
given in Table 3. We can guarantee that (&,↙,↖) is an adjoint triple by Theo-
rem 26.

& ⊥2 y1 ⊤2

⊥1 ⊥3 ⊥3 ⊥3

x1 ⊥3 z1 z3

x2 ⊥3 z2 z3

⊤1 ⊥3 z3 z3

↙ ⊥2 y1 ⊤2

⊥3 ⊤1 ⊥1 ⊥1

z1 ⊤1 x1 ⊥1

z2 ⊤1 x2 ⊥1

z3 ⊤1 ⊤1 ⊤1

⊤3 ⊤1 ⊤1 ⊤1

↖ ⊥1 x1 x2 ⊤1

⊥3 ⊤2 ⊥2 ⊥2 ⊥2

z1 ⊤2 y1 ⊥2 ⊥2

z2 ⊤2 ⊥2 y1 ⊥2

z3 ⊤2 ⊤2 ⊤2 ⊤2

⊤3 ⊤2 ⊤2 ⊤2 ⊤2

Table 3: Definition of (&,↙,↖) in Example 27.

Once again, we are interested in highlighting that the distributivity property is
a necessary requirement in order to guarantee that the conjunctor operator given
in Theorem 26 is well-defined. Assume that L2 is the non-distributive lattice N5

displayed in Figure 1. The set of join-irreducible elements of N5 is given by
J(N5) = {y1, y2, y3}. Notice that, the element ⊤2 has two different irredundant
finite ∨-decompositions, ⊤2 = sup{y1, y2} and ⊤2 = sup{y2, y3}.

For example, we will consider the mapping g : J(L1) × J(L2) → L3 de-
fined as g(x1, y1) = g(x1, y2) = g(x1, y3) = z1, g(x2, y1) = z2, g(x2, y2) = z3 and
g(x2, y3) = ⊤3. Now, we will see that the operator & defined from g as in Equa-
tion (5) is not well-defined. Considering the irredundant finite ∨-decomposition
⊤2 = sup{y1, y2}, we obtain x2 &⊤2 = sup{g(x2, y1), g(x2, y2)} = sup{z2, z3} = z3.
On the other hand, considering the irredundant finite ∨-decomposition ⊤2 =

sup{y2, y3}, we obtain x2 &⊤2 = sup{g(x2, y2), g(x2, y3)} = sup{z2,⊤3} = ⊤3.
Since x2 &⊤2 takes different values depending on the chosen irredundant ∨-
decomposition of⊤2, we conclude that the operator & obtained from Theorem 26
is not well-defined. □
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In the following, we will show that any conjunctor of an adjoint triple can be
expressed as in Equation (5).

Proposition 28. Let (L1,⪯1) and (L2,⪯2) be distributive complete lattices sat-
isfying the descending chain condition and (L3,⪯3) a complete lattice. For any
adjoint triple (&,↙,↖) with respect to (L1,⪯1), (L2,⪯2), (L3,⪯3), the conjunctor
& satisfies Equation (5).

Proof. Given an arbitrary adjoint triple (&,↙,↖), applying Properties (3) and
(4) of Proposition 15, we have that x & y = ⊥3 when x = ⊥1 and/or y = ⊥2.
Now, we will suppose that x , ⊥1 and y , ⊥2. Since (L1,⪯1) and (L2,⪯2) are
distributive complete lattices satisfying the descending chain condition, by The-
orem 11, the elements x and y have a unique irredundant finite ∨-decomposition,
namely x =

∨
p∈J(x) p and y =

∨
q∈J(y) q, where J(x) and J(y) are the sets of join-

irreducible elements in the decompositions. Taking into account Properties (6a)
and (6c) of Proposition 15, we obtain that:

x & y =

 ∨
p∈J(x)

p

&

 ∨
q∈J(y)

q

 = ∨
p∈J(x)

p &

 ∨
q∈J(y)

q


 = ∨

p∈J(x)

∨
q∈J(y)

(p & q) =
∨

p∈J(x)

∨
q∈J(y)

g(p, q)

where the mapping g : J(L1)×J(L2)→ L3 is defined as g(p, q) = p & q, for all
p ∈ J(L1), q ∈ J(L2). Clearly, g is order-preserving on both arguments. Hence,
we can conclude that the conjunctor & satisfies Equation (5). □

Theorem 26 and Proposition 28 enable us to ensure that the number of adjoint
triples, which can be defined with respect to (L1,⪯1), (L2,⪯2) finite distributive
complete lattices verifying the descending chain condition and (L3,⪯3) a finite
complete lattice, coincides with the number of order-preserving mappings on
both arguments defined from J(L1) × J(L2) to L3.

In this section, we have characterized the implications and conjunctors of Ga-
lois implications pairs, adjoint pairs and adjoint triples. From suitable algebraic
stuctures (posets, distributive complete lattices, etc), we have seen that a consid-
erable number of these residuated operators arises. In the following section, we
will define an ordering relation on the set of all Galois implications pairs in order
to prove that these residuated operators have the structure of a complete lattice.
Similar results will be presented considering right adjoint pairs, left adjoint pairs
and adjoint triples.
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5. Algebraic structure of pairs and triples

In this section, we will begin introducing an ordering relation defined on the
set of Galois implications pairs with respect to two complete lattices (L1,⪯1),
(L2,⪯2) and a poset (P3,≤3). We will show that Galois implications pairs can
be hierarchized giving rise to the structure of a complete lattice. Henceforth, the
set of all Galois implications pairs, with respect to (L1,⪯1), (L2,⪯2) and (P3,≤3),
will be denoted as I.

Proposition 29. The pair (I,⊑I) is a partially ordered set, where ⊑I is the or-
dering relation defined as:

(↙ j,↖ j) ⊑I (↙k,↖k) iff z↙ j y ⪯1 z↙k y

for all y ∈ L2, z ∈ P3 and (↙ j,↖ j), (↙k,↖k) ∈ I.

Proof. The proof straightforwardly follows from the reflexive, antisymmetric
and transitive properties of ⪯1. □

Notice that the inequalities z ↙ j y ⪯1 z ↙k y and z ↖ j x ⪯2 z ↖k x
are equivalent, for all x ∈ L1, y ∈ L2, z ∈ P3, as we show next. Suppose that
z ↙ j y ⪯1 z ↙k y and we will prove that the inequality z ↖ j x ⪯2 z ↖k x holds.
Applying Equivalence (2) to the trivial inequality z ↖ j x ⪯2 z ↖ j x, we obtain
that x ⪯1 z ↙ j (z ↖ j x) holds, for all x ∈ L1 and z ∈ P3. Taking into account
the hypothesis, we have that x ⪯1 z ↙k (z ↖ j x) and, by Equivalence (2), we
conclude z ↖ j x ⪯2 z ↖k x. The counterpart, that is, z ↖ j x ⪯2 z ↖k x implies
z ↙ j y ⪯1 z ↙k y can be deduced in an analogous way. Hence, the definition
of the ordering relation introduced in Proposition 29 can be given equivalently
from↖ j.

Two different Galois implications pairs (↙ j,↖ j) and (↙k,↖k) in I will be
called incomparable when (↙ j,↖ j) @I (↙k,↖k) and (↙k,↖k) @I (↙ j,↖ j)
and it will be denoted as (↙ j,↖ j)||(↙k,↖k).

Theorem 30. Let {(↙i,↖i)}i∈I ⊆ I be a non-empty arbitrary family of Galois
implications pairs with respect to (L1,⪯1), (L2,⪯2) and (P3,≤3). The mappings
↙inf : P3 × L2 → L1 and↖inf : P3 × L1 → L2, defined as:

z↙inf y =
∧
i∈I

{z↙i y}

z↖inf x =
∧
i∈I

{z↖i x}
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for all x ∈ L1, y ∈ L2, z ∈ P3, form a Galois implications pair with respect to
(L1,⪯1), (L2,⪯2) and (P3,≤3). Furthermore, (I,⊑I) is a meet-semilattice with
maximum element.

Proof. Now, we will prove that (↙inf,↖inf) is a Galois implications pair with
respect to (L1,⪯1), (L2,⪯2) and (P3,≤3) by means of Equivalence (2). We will
suppose that the inequality x ⪯1 z↙inf y is verified, being x ∈ L1, y ∈ L2, z ∈ P3.
As x ⪯1

∧
i∈I{z ↙i y} then we have that x ⪯1 z ↙i y, for all i ∈ I. Taking into

account that (↙i,↖i) is a Galois implications pair, the inequality x ⪯1 z ↙i y is
equivalent to y ⪯2 z ↖i x, for all i ∈ I. From the infimum property, we obtain
that y ⪯2

∧
i∈I{z↖i x} and therefore, y ⪯2 z↖inf x.

Following a similar reasoning to the previous one, we can prove the another
implication and we can conclude that (↙inf ,↖inf) is a Galois implications pair
with respect to (L1,⪯1), (L2,⪯2) and (P3,≤3).

Now, we will demonstrate (I,⊑I) is a meet-semilattice with a maximum
element. We will see that the infimum of every non-empty family of Galois im-
plications pairs of (I,⊑I) exists. Clearly,↙inf is the infimum of {↙i}i∈I and↖inf

is the infimum of {↖i}i∈I , since the point-wise ordering between the implications
have been considered (Proposition 29). Therefore, given a non-empty index set
I and the family {(↙i,↖i)}i∈I ⊆ I, we have that the Galois implications pair
(↙inf,↖inf) is the infimum of the family {(↙i,↖i)}i∈I in I.

Finally, it is easy to see that pair (↙g,↖g) defined as z ↙g y = ⊤1 and
z ↖g x = ⊤2, for all x ∈ L1, y ∈ L2, z ∈ P3, is a Galois implications pair,
which clearly is the maximum element of I. As a consequence, we obtain that
(↙,↖) ⊑I (↙g,↖g), for all (↙,↖) ∈ I.

Thus, (I,⊑I) is a meet-semilattice with maximum element. □

From Theorem 30 and Lemma 2, we can ensure that the set of all Galois
implications pairs with respect to (L1,⪯1), (L2,⪯2) and (P3,≤3) has the structure
of a complete lattice.

Corollary 31. (I,⊑I) is a complete lattice.

Moreover, we have that the least pair of (I,⊑I) is given by the mappings↙l,
↖l defined for all x ∈ L1, y ∈ L2 and z ∈ P3 as:

z↙l y =

⊤1 if y = ⊥2

⊥1 otherwise
z↖l x =

⊤2 if x = ⊥1

⊥2 otherwise

Given (↙,↖) ∈ I, by Proposition 23, we can define↙ : P3 × L2 → L1 and
↖ : P3×L1 → L2 as in Equation (3), that is, z↙ y = z↙ (y) and z↖ x = z↖ (x),
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for all z ∈ P3, x ∈ L1 and y ∈ L2. Note that, once we have fixed z ∈ P3,
the pair (z↙,

z↖) forms an antitone Galois connection. In [34], Theorem 1.6
shows that the set of Galois connections defined on posets has the structure of
a complete lattice if and only if the posets are complete lattices. From this fact,
Corollary 31 could be proved. Therefore, the main contribution of Theorem 30
consists in considering operators with two arguments, generalizing (classical and
residuated) implications, providing a constructive way of defining the infimum
operator of the complete lattice (I,⊑I). Furthermore, we have presented the
definition of the maximum and minimum elements in (I,⊑I). Besides Theorem
1.6 in [34], there are other interesting results [34, Theorem 2.6 and Corollary
1.6] related to distributive lattices, which will be rewritten to (I,⊑I) next.

Theorem 32. (I,⊑I) is a completely distributive complete lattice if and only if
(L1,⪯1) and (L2,⪯2) are completely distributive complete lattices. In particular,
if (L1,⪯1) and (L2,⪯2) are finite distributive lattices, then (I,⊑I) is distributive.

Proof. The proof straightforwardly follows from Theorem 2.6 in [34]. □

Hence, from the results above, we have introduced a constructive definition
of the infimum in (I,⊑I). However, the determination of the supremum does
not arise similarly, in general. Really, this is not a problem since, as it is usual
in topped ∧-structures, the supremum of arbitrary subsets of I can be computed
as the infimum of the upper bounds of the subset in I, although it would be very
interesting in many aspects to obtain a constructive definition. The following
proposition provides sufficient conditions in order to give an analytical definition
of the supremum operator.

Proposition 33. Let (L1,⪯1), (L2,⪯2) be two distributive complete lattices satis-
fying the join-infinite distributive law, the ascending and descending chain con-
ditions, (P3,≤3) be a poset and {(↙i,↖i)}i∈I ⊆ I be a non-empty arbitrary family
of Galois implications pairs with respect to (L1,⪯1), (L2,⪯2) and (P3,≤3). The
mappings↙sup : P3 × L2 → L1 and↖sup : P3 × L1 → L2, defined as:

z↙sup y =
∨
i∈I

{z↙i y}

z↖sup x =
∨
i∈I

{z↖i x}

for all x ∈ L1, y ∈ L2, z ∈ P3, form a Galois implications pair (↙sup,↖sup) with
respect to (L1,⪯1), (L2,⪯2) and (P3,≤3).
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Proof. In order to prove that (↙sup,↖sup) is a Galois implications pair, we firstly
suppose that the inequality x ⪯1 z ↙sup y is verified being x ∈ L1, y ∈ L2,
z ∈ P3, that is, x ⪯1

∨
i∈I{z ↙i y}. Applying Theorem 11, we can express

x ∈ L1 from its unique irredundant finite ∨-decomposition, that is, x =
∨

p∈J(x) p
where J(x) is the set of join-irreducible elements of the unique irredundant finite
∨-decomposition of the element x. From this fact and taking into account the hy-
pothesis, we obtain that the following chain of inequalities p ⪯1 x ⪯1

∨
i∈I{z ↙i

y} holds, for all i ∈ I and p ∈ J(x). Hence, by Lemma 13, for every p ∈ J(x),
there exists ip ∈ I, such that p ⪯1 z↙ip y.

Since (↙ip ,↖ip) is a Galois implications pair, the inequality p ⪯1 z ↙ip y is
equivalent to y ⪯2 z ↖ip p. Then, we can ensure that for every p ∈ J(x), there
exists ip ∈ I, such that y ⪯2 z↖ip p.

Therefore, we have the following chain of inequalities:

y ⪯2

∧
p∈J(x)

{z↖ip p}

⪯2

∧
p∈J(x)

{z↖sup p}

=
∧

p∈J(x)

∨
i∈I

{z↖i p}


(∗)
=
∨
i∈I

 ∧
p∈J(x)

{z↖i p}


=
∨
i∈I

z↖i

 ∨
p∈J(x)

p




=
∨
i∈I

{z↖i x}

= z↖sup x

where (∗) is given by the join-infinite distributive law of the lattice L2. As a
consequence, we obtain that y ⪯2 z ↖sup x. Following a similar reasoning, we
prove that if y ⪯2 z↖sup x, then x ⪯1

∨
i∈I{z↙i y}, for all x ∈ L1, y ∈ L2, z ∈ P3.

Thus, we have that (↙sup,↖sup) is a Galois implication pair w.r.t (L1,⪯1), (L2,⪯2)
and (P3,≤3). □

As a consequence of the previous results, we have computed and hierar-
chized all Galois implications pairs associated with two complete lattices (L1,⪯1
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), (L2,⪯2) and a poset (P3,≤3). This contribution gives us information related to
the possible pairs that we can use in real applications, as well as the values that
these pairs can take (according to the ordering relation ⊑I). Indeed, the results
presented in this work, allow us to define various Galois implications pairs as
different from each other as we need in our application. This fact drives, for ex-
ample, to establish different degrees of preference between objects and attributes
in frameworks such as multi-adjoint formal concept analysis, which can be very
useful in real problems.

Note that, in the hypotheses of the proposition above, if (L1,⪯1) and (L2,⪯2)
are also completely distributive complete lattices then, by Theorem 2.6 presented
in [34], besides to obtain a constructive definition of the supremum, by The-
orem 32 we will also have that (I,⊑I) is a completely distributive complete
lattice.

As a consequence of the previous results, we have computed and hierar-
chized all Galois implications pairs associated with two complete lattices (L1,⪯1

), (L2,⪯2) and a poset (P3,≤3). This contribution gives us information related to
the possible pairs that we can use in real applications, as well as the values that
these pairs can take (according to the ordering relation ⊑I). Indeed, the results
presented in this work, allow us to define various Galois implications pairs as
different from each other as we need in our application. This fact drives, for ex-
ample, to establish different degrees of preference between objects and attributes
in frameworks such as multi-adjoint formal concept analysis, which can be very
useful in real problems.

The next example shows that assuming a distributive lattice is a necessary
condition in order to the pair (↙sup,↖sup) defined in Proposition 33 be a Galois
implications pair.

Example 34. Coming back to Example 22, we will consider the distributive
complete lattice (L1,⪯1), the non-distributive complete lattice (L2,⪯2) and the
poset (P3,≤3), which are depicted in Figure 2 from left to right, respectively.
From the Galois implications pairs (↙,↖) and (w,v) with respect to (L1,⪯1

), (L2,⪯2) and (P3,≤3) displayed in Table 1 and Table 2, respectively, we will
compute the pair (↙sup,↖sup). By using Proposition 33, we obtain the pair (↙sup

,↖sup) depicted in Table 4:
Now, we will show that (↙sup,↖sup) is not a Galois implications pair with

respect to (L1,⪯1), (L2,⪯2) and (P3,≤3). By Proposition 19, in order to see that
(↙sup,↖sup) is a Galois implications pair, we need to prove that z ↙sup y =
max{x ∈ L1 | y ⪯2 z ↖sup x}, for all y ∈ L2, z ∈ P3, and that ↖sup is order-
reversing on the second argument. Note that, z3 ↙

sup y1 = sup{x ∈ L1 | y1 ⪯2
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↙sup ⊥2 y1 y2 y3 ⊤2

z1 ⊤1 x2 ⊥1 ⊥1 ⊥1

z2 ⊤1 x2 x2 x2 x2

z3 ⊤1 ⊤1 x2 ⊥1 ⊥1

⊤3 ⊤1 ⊤1 ⊥1 x2 ⊥1

↖sup ⊥1 x1 x2 ⊤1

z1 ⊤2 ⊥2 y1 ⊥2

z2 ⊤2 ⊥2 ⊤2 ⊥2

z3 ⊤2 y1 ⊤2 ⊥2

⊤3 ⊤2 y1 y3 y1

Table 4: Pair (↙sup,↖sup) of Example 34.

z3 ↖sup x} = sup{⊥1, x1, x2} = ⊤1 and ⊤1 < {x ∈ L1 | y1 ⪯2 z3 ↖sup x}. Hence,
we obtain that the supremum is not a maximum which leads us to conclude that
(↙sup,↖sup) is not a Galois implications pair.

Therefore, as (L2,⪯2) satisfies the descending chain condition, the distributiv-
ity property is a necessary condition in order to ensure that the operators defined
in Proposition 33,↙sup and↖sup form a Galois implications pair.

Notice that, considering a non-distributive complete lattice (L1,⪯1), a dis-
tributive complete lattice (L2,⪯2), both satisfying the descending chain condi-
tion, and a poset (P3,≤3), we can also find a family of Galois implications pairs
with respect to (L1,⪯1), (L2,⪯2) and (P3,≤3) such that ↙sup and ↖sup do not
form a Galois implications pair. □

Concerning the adjoint triples, we also need a similar study. First of all, an
ordering relation will be defined on the set of all adjoint triples with respect to
three complete lattices (L1,⪯1), (L2,⪯2), (L3,⪯3). This fact lead us to establish a
hierarchy among adjoint triples. From now on, the set of all adjoint triples with
respect to (L1,⪯1), (L2,⪯2), (L3,⪯3) will be denoted as T .

Proposition 35. The pair (T ,⊑T ) is a partially ordered set, where ⊑T is the
ordering relation defined as:

(& j,↙
j,↖ j) ⊑T (&k,↙

k,↖k) iff x & j y ⪯3 x &k y

for all x ∈ L1, y ∈ L2 and (& j,↙
j,↖ j), (&k,↙

k,↖k) ∈ T .

Proof. It is easy to see that the ordering relation ⊑T satisfies the reflexive, anti-
symmetric and transitive properties from the properties of ⪯3. □

If there exist two different adjoint triples (& j,↙
j,↖ j), (&k,↙

k,↖k) ∈ T
such that (& j,↙

j,↖ j) @T (&k,↙
k,↖k) and (&k,↙

k,↖k) @T (& j,↙
j,↖ j),

then we will say that they are incomparable. In this case, we will write that
(& j,↙

j,↖ j)||(&k,↙
k,↖k).
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Remark 36. It is also important to note that, by the monotonicity of the adjoint
implications, the fixed ordering relation on the conjunctors of adjoint triples is
the opposite to the ones given for their corresponding adjoint implications. Given
two adjoint triples (& j, ↙

j,↖ j), (&k, ↙
k,↖k) ∈ T such that (& j,↙

j,↖ j) ⊑T
(&k,↙

k,↖k), then the inequalities x & j y ⪯3 x &k y, z ↙k y ⪯1 z ↙ j y and
z ↖k x ⪯2 z ↖ j x are equivalent, for all x ∈ L1, y ∈ L2 and z ∈ L3. This fact can
be deduced following a similar procedure to the one given after Proposition 29.

The previous remark justifies the definition of the adjoint triple introduced in
the following result.

Theorem 37. Let {(&i,↙
i,↖i)}i∈I ⊆ T be a non-empty arbitrary family of ad-

joint triples with respect to (L1,⪯1), (L2,⪯2), (L3,⪯3). The following mappings
&sup : L1 × L2 → L3,wsup : L3 × L2 → L1,vsup : L3 × L1 → L2 defined, for all
x ∈ L1, y ∈ L2 and z ∈ L3, as:

x &sup y =
∨
i∈I

{x &i y}

zwsup y =
∧
i∈I

{z↙i y}

zvsup x =
∧
i∈I

{z↖i x}

form an adjoint triple (&sup,w
sup,vsup) with respect to (L1,⪯1), (L2,⪯2) and

(L3,⪯3). Additionally, (T ,⊑T ) is a join-semilattice with minimum element.

Proof. First of all, we assume that the inequality x &sup y ⪯3 z is verified, being
x ∈ L1, y ∈ L2 and z ∈ L3, that is,

∨
i∈I{x &i y} ⪯3 z holds. Applying the

supremum property, we have that the inequality x &i y ⪯3 z is satisfied, for all
i ∈ I. Taking into account that (&i,↙

i,↖i) is an adjoint triple, we obtain that
x &i y ⪯3 z is equivalent to x ⪯1 z ↙i y, for all i ∈ I. By the infimum property,
we have that x ⪯1

∧
i∈I{z↙i y} = zwsup y holds.

As the previous deductions are equivalences, if we suppose that x ⪯1 zwsup

y =
∧

i∈I{z↙i y}, then we obtain that
∨

i∈I{x &i y} ⪯3 z, that is x &sup y ⪯3 z.
The another equivalence x &sup y ⪯3 z if and only if y ⪯2 z vsup x can

be proved in a similar way. Hence, (&sup,w
sup,vsup) is an adjoint triple w.r.t

(L1,⪯1), (L2,⪯2), (L3,⪯3).
Now, we will demonstrate (T ,⊑T ) is a join-semilattice with a minimum ele-

ment. First of all, we will see that the supremum of every non-empty family of
adjoint triples of (T ,⊑T ) exists. Clearly, &sup is the supremum of {&i}i∈I , since
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the point-wise ordering between the conjunctors have been considered (Propo-
sition 35). Therefore, given a non-empty index set I and the family {(&i,↙

i

,↖i)}i∈I ⊆ T , we have that (&sup,w
sup,vsup) is the supremum of the family

{(&i,↙
i,↖i)}i∈I in T .

Finally, we clearly have that the triple (&l,↙
l,↖l) whose operators are de-

fined as x &l y = ⊥3, z↙l y = ⊤1 and z↖l x = ⊤2, for all x ∈ L1, y ∈ L2, z ∈ L3,
is an adjoint triple and it is the minimum element of T .

Consequently, (T ,⊑T ) is a join-semilattice with minimum element. □

Applying Theorem 37 and Lemma 2, we can conclude that the set of all
adjoint triples with respect to (L1,⪯1), (L2,⪯2), (L3,⪯3) has the structure of a
complete lattice.

Corollary 38. (T ,⊑T ) is a complete lattice.

Note that, the adjoint implications with the greatest values appear at the bot
of this complete lattice, unlike what happens with the complete lattice composed
by Galois implications pairs. This fact is due to the considered ordering (Re-
mark 36).

As it is usual in ∨-structures with a minimum element, the infimum of a
family of adjoint triples needs to be computed as the supremum of the lower
bounds of the family. The following result is analogous to Proposition 33 with
respect to the infimum of (T ,⊑T ).

Proposition 39. Let {(&i,↙
i,↖i)}i∈I ⊆ T a non-empty arbitrary family of ad-

joint triples with respect to three distributive complete lattices (L1,⪯1), (L2,⪯2

), (L3,⪯3) satisfying the ascending and descending chain conditions, the join-
infinite distributive law in (L1,⪯1), (L2,⪯2) and the meet-infinite distributive law
in (L3,⪯3). The following mappings &inf : L1 × L2 → L3,winf : L3 × L2 → L1,
vinf : L3 × L1 → L2 defined, for all x ∈ L1, y ∈ L2 and z ∈ L3, as:

x &inf y =
∧
i∈I

{x &i y}

zwinf y =
∨
i∈I

{z↙i y}

zvinf x =
∨
i∈I

{z↖i x}

form an adjoint triple (&inf,w
inf ,vinf) with respect to (L1,⪯1), (L2,⪯2), (L3,⪯3).
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Proof. First of all, we assume that the inequality x &inf y ⪯3 z is verified, be-
ing x ∈ L1, y ∈ L2 and z ∈ L3, that is,

∧
i∈I(x &i y) ⪯3 z holds. Applying the

dual of Theorem 11, we can express z ∈ L3 from its unique irredundant finite ∧-
decomposition, that is, z =

∧
q∈M(z) q where M(z) is the set of meet-irreducible el-

ements of the unique irredundant finite ∧-decomposition of the element z. From
this fact and taking into account the hypothesis, we obtain that the following
chain of inequalities

∧
i∈I(x &i y) ⪯3 z ⪯3 q holds, for all q ∈ M(z). Hence,

by the dual of Lemma 13, for every q ∈ M(z), there exists iq ∈ I, such that
x &iq y ⪯3 q.

Since (&iq ,↙
iq ,↖iq) is an adjoint triple, we have that the inequality x &iq y ⪯3

q is equivalent to y ⪯2 q ↖iq x. Consequently, we can guarantee that for every
q ∈ M(z), there exists iq ∈ I, such that y ⪯2 q ↖iq x. Therefore, we have the
following chain of inequalities:

y ⪯2

∧
q∈M(z)

{q↖iq x}

⪯2

∧
q∈M(z)

{qvinf x}

=
∧

q∈M(z)

∨
i∈I

{q↖i x}


(∗)
=
∨
i∈I

 ∧q∈M(z)

{q↖i x}


=
∨
i∈I


 ∧

q∈M(z)

q

↖i x


=
∨
i∈I

{z↖i x}

= zvinf x

where (∗) is given by the join-infinite distributive law holds in the lattice (L2,⪯2).
Conversely, we suppose that y ⪯2 z vinf x =

∨
i∈I(z ↖i x) holds, being

x ∈ L1, y ∈ L2 and z ∈ L3. We can apply Theorem 11 to express y ∈ L2 from
its unique irredundant finite ∨-decomposition obtaining that y =

∨
p∈J(y) p where

J(y) is the set of join-irreducible elements of the decomposition. From this fact
and taking into account the hypothesis, we obtain that the following chain of
inequalities p ⪯2 y ⪯2

∨
i∈I{z ↖i x} holds, for all i ∈ I and p ∈ J(y). Hence, by
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Lemma 13, for every p ∈ J(y), there exists ip ∈ I, such that p ⪯2 z↖ip x.
Clearly, the inequality p ⪯2 z ↖ip x is equivalent to x &ip p ⪯3 z, since

(&ip ,↙
ip ,↖ip) is an adjoint triple. Consequently, we can guarantee that for every

p ∈ J(y), there exists ip ∈ I, such that x &ip p ⪯3 z, from which we have the
following chain of inequalities:

x &inf y =
∧
i∈I

{x &i y}

=
∧
i∈I

x &i

 ∨
p∈J(y)

p




=
∧
i∈I

 ∨
p∈J(y)

{x &i p}


(∗)
=
∨

p∈J(y)

∧
i∈I

{x &i p}


=
∨

p∈J(y)

{x &inf p}

⪯3

∨
p∈J(y)

{x &ip p}

⪯3 z

where (∗) holds because (L3,⪯3) satisfies the meet-infinite distributive law.
Following a similar reasoning we prove the another equivalence x &inf y ⪯3 z

if and only if x ⪯1 z winf y and we can conclude that (&inf,w
inf,vinf) is an

adjoint triple w.r.t (L1,⪯1), (L2,⪯2), (L3,⪯3). □

The hypothesis of considering three distributive lattices is a necessary con-
dition in order to guarantee that the triple (&inf ,w

inf,vinf) defined in Proposi-
tion 39 be an adjoint triple. This fact will be illustrated in the following example.

Example 40. Consider the distributive complete lattices (L1,⪯1), (L3,⪯3) and
the non-distributive complete lattice (L2,⪯2) depicted in Figure 4 from left to
right, respectively. Given the adjoint triples (&1,↙

1,↖1) and (&2,↙
2,↖2) de-

fined in Table 5, we can compute the operators &inf , winf and vinf which are
defined in Proposition 39 and are also displayed in Table 5. By Proposition 16, if
(&inf ,w

inf,vinf) is an adjoint triple with respect to (L1,⪯1), (L2,⪯2) and (L3,⪯3),
the following equalities must be verified:

zwinf y = max{x ∈ L1 | x &inf y ⪯3 z}
zvinf x = max{y ∈ L2 | x &inf y ⪯3 z}
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for all x ∈ L1, y ∈ L2 and z ∈ L3. It is easy to check that these requirements are
not satisfied by the operators &inf ,winf andvinf. For example, considering the
definition ofwinf (given in Proposition 39) and Table 5, we have that ⊥3 w

inf

y1 = (⊥3 ↙
1 y1) ∨ (⊥3 ↙

2 y1) = ⊥1. However, ⊥3 w
inf y1 must be equal to

max{x ∈ L1 | x &inf y1 ⪯3 ⊥3} = max{⊥1, x1} = x1. As a consequence, we obtain
that (&inf,w

inf,vinf) is not an adjoint triple.
Taking into account that (L2,⪯2) satisfies the descending chain condition, we

can conclude that the distributivity property is a necessary condition in order to
ensure that the operators &inf,winf andvinf, defined in Proposition 39, form an
adjoint triple.

•
⊥1
@

@
@

�
�
�

•x1 •x2�
�
�

@
@

@
•
⊤1

•
⊥2
@

@@

�
��

•y1 •y2

•y3 �
��

A
A

A
A
A
•
⊤2

•
⊥3
@

@@

�
��

•z1 • z2�
��

@
@@
• z3

•
⊤3

Figure 4: Lattices (L1,⪯1), (L2,⪯2) and (L3,⪯3) of Example 40.

It is convenient to mention that, when we consider either (L1,⪯1) or (L3,⪯3)
is a non-distributive complete lattice, we can also find a family of adjoint triples
with respect to (L1,⪯1), (L2,⪯2) and (L3,⪯3) such that operators &inf,winf and
vinf do not form an adjoint triple. □

Thus, a hierarchy among adjoint triples has also been introduced, which pro-
vides interesting advantages. Specifically, just like in the case of Galois implica-
tions pairs, this fact allows the user to define efficiently preferences among the
objects and attributes on a database and, as a consequence, improve the capabil-
ity of modeling the knowledge system in which these operators are applied.

It is worth noting that analogous results to the ones given to the set of all
adjoint triples can be obtained to the set of all left (right, respectively) adjoint
pairs, since we can define an ordering relation on the conjunctors of left (right,
respectively) adjoint pairs as in Proposition 35. Therefore, we can guarantee that
the set of all left (right, respectively) adjoint pairs also has structure of complete
lattice.
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&1 ⊥2 y1 y2 y3 ⊤2

⊥1 ⊥3 ⊥3 ⊥3 ⊥3 ⊥3

x1 ⊥3 z1 z1 z1 z1

x2 ⊥3 z2 z2 z2 z2

⊤1 ⊥3 z3 z3 z3 z3

↙1 ⊥2 y1 y2 y3 ⊤2

⊥3 ⊤1 ⊥1 ⊥1 ⊥1 ⊥1

z1 ⊤1 x1 x1 x1 x1

z2 ⊤1 x2 x2 x2 x2

z3 ⊤1 ⊤1 ⊤1 ⊤1 ⊤1

⊤3 ⊤1 ⊤1 ⊤1 ⊤1 ⊤1

↖1 ⊥1 x1 x2 ⊤1

⊥3 ⊤2 ⊥2 ⊥2 ⊥2

z1 ⊤2 ⊤2 ⊥2 ⊥2

z2 ⊤2 ⊥2 ⊤2 ⊥2

z3 ⊤2 ⊤2 ⊤2 ⊤2

⊤3 ⊤2 ⊤2 ⊤2 ⊤2

&2 ⊥2 y1 y2 y3 ⊤2

⊥1 ⊥3 ⊥3 ⊥3 ⊥3 ⊥3

x1 ⊥3 z2 z2 z2 z2

x2 ⊥3 z3 z3 z3 z3

⊤1 ⊥3 z3 z3 z3 z3

↙2 ⊥2 y1 y2 y3 ⊤2

⊥3 ⊤1 ⊥1 ⊥1 ⊥1 ⊥1

z1 ⊤1 ⊥1 ⊥1 ⊥1 ⊥1

z2 ⊤1 x1 x1 x1 x1

z3 ⊤1 ⊤1 ⊤1 ⊤1 ⊤1

⊤3 ⊤1 ⊤1 ⊤1 ⊤1 ⊤1

↖2 ⊥1 x1 x2 ⊤1

⊥3 ⊤2 ⊥2 ⊥2 ⊥2

z1 ⊤2 ⊥2 ⊥2 ⊥2

z2 ⊤2 ⊤2 ⊥2 ⊥2

z3 ⊤2 ⊤2 ⊤2 ⊤2

⊤3 ⊤2 ⊤2 ⊤2 ⊤2

&inf ⊥2 y1 y2 y3 ⊤2

⊥1 ⊥3 ⊥3 ⊥3 ⊥3 ⊥3

x1 ⊥3 ⊥3 ⊥3 ⊥3 ⊥3

x2 ⊥3 z2 z2 z2 z2

⊤1 ⊥3 z3 z3 z3 z3

winf ⊥2 y1 y2 y3 ⊤2

⊥3 ⊤1 ⊥1 ⊥1 ⊥1 ⊥1

z1 ⊤1 x1 x1 x1 x1

z2 ⊤1 ⊤1 ⊤1 ⊤1 ⊤1

z3 ⊤1 ⊤1 ⊤1 ⊤1 ⊤1

⊤3 ⊤1 ⊤1 ⊤1 ⊤1 ⊤1

vinf ⊥1 x1 x2 ⊤1

⊥3 ⊤2 ⊥2 ⊥2 ⊥2

z1 ⊤2 ⊤2 ⊥2 ⊥2

z2 ⊤2 ⊤2 ⊤2 ⊥2

z3 ⊤2 ⊤2 ⊤2 ⊤2

⊤3 ⊤2 ⊤2 ⊤2 ⊤2

Table 5: Definition of (&1,↙
1,↖1), (&2,↙

2,↖2) and (&inf ,w
inf ,vinf) of Example 40.

6. Conclusions and further work

We have provided a characterization which define the conjunctors and the im-
plications of Galois implications pairs, left/right adjoint pairs and adjoint triples,
by using join-irreducible elements. The descending/ascending chain condition
and the distributivity property of the complete lattices have played an important
role in this characterization. We have defined an ordering relation on the set of
all Galois implications pairs and consequently, we have established a hierarchy
among them. In addition, we have proven that the set of all Galois implications
pairs has structure of a complete lattice. An analogous study have been carried
out with respect to adjoint triples and adjoint pairs. All these results, related to
the algebraic structure of Galois implications pairs, adjoint triples and adjoint
pairs, can be applied to general complete lattices such as infinite non-distributive
lattices.

As a consequence, an efficient way to define general residuated operators
either from examples or from data given in real cases, is presented. Therefore,
given a set of initial values obtained from observations, we can build operators
forming implications pairs, adjoint pairs and adjoint triples, to be considered
in all the frameworks previously mentioned, such as in the fuzzy extensions of
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logic programming, formal concept analysis, rough theory, etc., and all these
frameworks can be applied to the real problem associated with the observations.

For example, in the unit interval, since all the values are join-irreducible,
except for 0, from any set of observed values, the monotonicity property is only
required to define the pairs and triples given in Equations (3), (4), and (5). There-
fore, these operators will always be computed, when the data have a monotonous
character, which is the least expected property, if the data are associated with a
conjunctor or an implication.

In the case of lattices, thanks to the obtained results, the construction is also
efficient and simple. It is only needed to start from the values given by the obser-
vations and consider them as a subset of join-irreducible elements of the lattice.
From this subset, the rest of the elements of the complete lattice can be defined,
satisfying the distributive property and any other required condition. These pro-
cedures of computing implications pairs, adjoint pairs and adjoint triples from
examples will be given in detail and applied to real cases in further extensions of
this paper.

Furthermore, the theoretical advances achieved in this work will be very use-
ful to study the algebraic structured formed by Galois implications pairs and
adjoint triples whose adjoint negations [13] coincide with a given pair of weak
negations [23], which is a future challenge that have emerged in the light of the
obtained results.
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