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Abstract

Multi-adjoint concept lattice theory is a general fuzzy approach of formal
concept analysis, which has diverse interesting properties. One of them is
that it is possible to provide different degrees of preference among the set
of objects/attributes. This paper studies a family of implications, based
on the divisible discrete t-norms and in the Miller’s law, which can be
associated with a qualitative range of preference degrees to be considered
in the applications by non-expert users of the FCA framework.
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1. Introduction

Nowadays, preferences are omnipresent in most of the recommender sys-
tems around the world (Netflix, Youtube, Spotify, . . . ). These kinds of
systems are personalized according to the user’s preferences, that is, the
systems and their computational mechanisms are put at the service of the
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user. In fact, personalization has been pointed out by Forbes as “the ul-
timate promise of the digital age” and several executives have established
a direct impact on maximizing sales [23]. Therefore, the incorporation of
preferences into knowledge-based systems is an important challenge today.

However, there exist several drawbacks when we ask someone to express
his/her preference in terms of a real number. For instance, the same numer-
ical value provided by two individuals may not have the same meaning, as
Dubois discussed in [19]. In order to avoid this kind of situations, a limited
qualitative scale that can be identically understood by several individuals,
whose labels can be compared, needs to be considered. Indeed, it is well
known that the memory plays an important role in the processes that hu-
mans perform for the acquisition of knowledge. Specifically, the working
memory allows us to handle and to connect information in order to make
decisions, solve certain problems and understand the language. This work-
ing memory is conceived as a temporary storage system of the information
with a limited capacity and therefore, it is quickly overloaded. For exam-
ple, George A. Miller stated that the number of units of information that
a person can store in his/her working memory is seven plus or minus two.
This statement is known in psychology as Miller’s Law and is put forward
in [40], which is one of the most cited papers in psychology.

In practice, Miller’s Law can be interpreted as the number of degrees of
preference that a person is able to consider online, e.g. for a set of objects
to be evaluated. In fact, nowadays, when a film, a hotel, a restaurant, an
athlete, etc., is evaluated, usually a scale of five values, and not ten or hun-
dred, is considered. Indeed, there exist theories based on the consideration
of less values, such as three-valued logic [31], Belnap’s logic [5], three-way
decisions [22, 46] or bipolarity (when positive, neutral and negative values
are considered) [21].

Formal concept analysis (FCA) identifies conceptual structures in a data
set that relates a set of attributes A and a set of objects B to each other by
means of a binary relation R ⊆ A×B. These pieces of information are called
concepts and a hierarchy can be established on them providing an algebraic
structure called concept lattice. From the concept lattice, a mathematical
development for conceptual data analysis and processing of knowledge can
be carried out. FCA is an actively researched mathematical tool from the
theoretical [29, 36] and applicational [1, 3, 7, 12, 30, 42, 43, 45] point of view.
Later, different fuzzy generalizations of FCA were introduced, as [2, 6, 8].

Fuzzy generalizations of the theory of FCA have been employed to solve
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several real problems, such as, multi-level data analysis, classification prob-
lems, analysis of solar power and weather open data, generation of linguistic
description, rule learning and concept generation problems, among others.
Some of the most recent works in which fuzzy FCA has been applied, can
be found in [12, 13, 39, 41, 47]. For example, in [41] a new fuzzy rule-based
classification model is proposed for fuzzy granular rule learning. In [3],
this theory is considered to detect criminal patterns. In [27], fuzzy FCA
is applied in the cloud environment to ensure the distribution of compute
resources to the user. Fuzzy FCA is also applied in [44] to detect the feel-
ings of the citizens toward technology, before and after the emergence of
the Covid-19 pandemic. The sentiment analysis is also addresses from the
perspective of fuzzy formal concept analysis in [25]. In [13], a new method
for automatically generating linguistic descriptions by using residuated con-
cept lattices is provided. In [12], multi adjoint formal concepts is applied
to analyze solar power and weather open data in order to characterize the
states of the sky and analyze the weather conditions, under which the energy
production of photovoltaic panels is optimal.

The multi-adjoint concept lattice framework [34, 35, 37] can consider
several adjoint triples in the definition of the concept-forming operations,
providing interesting properties. One of these is the possibility of making up
several clusters in the subsets of attributes and/or objects, which allows the
consideration of different degrees of preference among them. The possibility
of considering preferences in a (discrete) fuzzy concept lattice framework
was presented in [11].

These preference degrees can be interpreted as the values of a mem-
bership function modeling a preference on the attributes and/or objects,
following the semantics proposed by Zadeh, in which the values represent
the intensity of preference in favor of a specific attribute/object [20]. This
scale of membership values should be qualitative and small, as was argued
above in order to be identically understood by several individuals (cogni-
tively easier to grasp) and to allow for comparison [19]. Moreover, Dubois
and Prade also noted the necessity of mapping them into a quantitative
scale, although this must be well justified.

Following this idea, our main goal will consist of developing a fixed
discrete and semantically complete structure considering at most seven lin-
guistic labels to be mainly used in FCA Hence, since only the implications
of the adjoint triples are considered in the definition of the concept-forming
operators in FCA, we will be focused on the study of a family of implica-
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tions in the algebraic structure. Moreover, the semantics of the different
degrees of preference that the user can consider in this environment will be
perfectly delimited and justified.

Therefore, this paper aims to break with the general trend of proposing
more complex algebraic environments, which is interesting and may have
an impact in the medium to long term, but needs a basic and applicable
starting point in the short term. A discrete algebraic structure based on
Miller’s Law will be considered and a family of implications, appropriate to
distinguish different degrees of a membership function of preference on the
set of attributes or/and objects of a context, will be explored. This new
approach will enable users without theoretical knowledge to use FCA while
applying the usual semantic values of high preference, medium preference,
etc., to a specific application. Therefore, the study developed in this paper
will enrich the applications of FCA [3, 12, 13, 39, 41, 47], providing a formal
framework to make the use of preferences in FCA more addresable for non-
expert users.

This paper is structured as follows. In Section 2, we recall several nec-
essary preliminary notions. A study of Fuzzy Formal Concept Analysis
(FFCA) considering discrete operations is introduced in Section 3 and the
advantages of the use of this kind of operations in FFCA are illustrated by
means of a useful example in Section 4. Finally, the paper ends with several
conclusions and prospects for future work.

2. Preliminaries

In order to keep the paper self-contained, the definitions and results
needed throughout the paper will be recalled next.

2.1. Discrete triangular norms

The notion of triangular norm (t-norm) has been used in different fuzzy
frameworks, such as in fuzzy logic, fuzzy relational equations, fuzzy rough
sets, fuzzy formal concept analysis, etc. Its properties and extensions have
been widely studied [16, 26, 28]. However, the non-countability of the unit
interval [0, 1] is a drawback instead of an advantage in different applica-
tions [17]. The following definition recalls the notion of a triangular norm
on a finite chain.

Definition 1 ([24]). Let Cn = {x1, . . . , xn} be a finite chain such that
x1 < x2 < · · · < xn. A mapping T : Cn ×Cn → Cn is a discrete t-norm if it
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is commutative, associative, order-preserving and has xn as neutral element,
i.e.

T (xi, xn) = xi, for all i ∈ {1, 2, . . . , n} .

Two interesting properties related to idempotent elements of a discrete t-
norm are introduced next, whose resolution is direct. The set of idempotent
elements of T will be denoted as Idem(T ).

Lemma 2. Let T, T ∗ : Cn × Cn → Cn be two discrete t-norms. If there
exist xi ̸= xj ∈ Cn, satisfying that xi ∈ Idem(T ), xi /∈ Idem(T ∗) and
xj ∈ Idem(T ∗), xj /∈ Idem(T ), then T and T ∗ are incomparable, that is,
T ≰ T ∗ and T ∗ ≰ T .

Lemma 3. Given two discrete t-norms T, T ∗ : Cn × Cn → Cn with resid-
uated implications ↖T ,↖T ∗ : Cn × Cn → Cn. If Idem(T ) ⊆ Idem(T ∗), we
have that ↖T ∗≤↖T .

An interesting kind of t-norms are the divisible discrete t-norms charac-
terized by Mayor and Torrens in [32].

Definition 4 ([24]). A discrete t-norm T : Cn × Cn → Cn is called divis-
ible if for any i, j ∈ {2, . . . , n} it holds that, if T (xi, xj) = xr, then

T (xi−1, xj) = xp and T (xi, xj−1) = xq

with r − 1 ≤ p, q ≤ r.

Inspired by the  Lukasiewicz t-norm on the real unit interval [0, 1], a
discrete divisible t-norm can be defined.

Lemma 5. Given an integer number k ∈ Z, a natural number l ∈ N, and
the index set I = {k, k + 1, . . . , k + l}, the operation TL : I × I → I defined
by TL(i, j) = max{k, i + j − (k + l)}, for all i, j ∈ I, is a discrete divisible
t-norm.

From the characterization shown in [32], the following result arises.

Proposition 6. Let T be a divisible discrete t-norm on a finite chain Cn =
{x1, . . . , xn} and let a1 < a2 < · · · < ak be the idempotent elements of T .
Then, T is given by:

T (xi, xj) =

{
xmax{l,i+j−(l+1)} if xi, xj ∈ [al, al+1], l ∈ {1, . . . , k − 1}
xmin{i,j} otherwise

for all xi, xj ∈ Cn.
5



2.2. Adjoint triples

Residuated t-norms or, equivalently, left-continuous t-norms, are also
very useful operations in frameworks such as fuzzy relational equations,
fuzzy logic, etc. This section directly introduces one of the most general op-
erations with a residuum [9, 10], which generalizes left-continuous t-norms.

Definition 7. Let (P1,≤1), (P2,≤2), (P3,≤3) be three partially ordered
sets (posets) and &: P1 × P2 → P3, ↙ : P3 × P2 → P1, ↖ : P3 × P1 → P2

be three mappings. We say that:

• (&,↙) is a right adjoint pair with respect to P1, P2, P3, if the equiv-
alence

x ≤1 z ↙ y iff x& y ≤3 z (1)

is satisfied, for all x ∈ P1, y ∈ P2 and z ∈ P3.

• (&,↖) is a left adjoint pair with respect to P1, P2, P3, if the equiva-
lence

x ≤1 z ↙ y iff y ≤2 z ↖ x (2)

holds, for all x ∈ P1, y ∈ P2 and z ∈ P3.

Equivalences (1) and (2) are known as adjointness properties. The tu-
ple (&,↙,↖) is called adjoint triple with respect to P1, P2, P3, if (&,↙)
and (&,↖) are left and right adjoint pairs to the corresponding posets,
respectively.

Note that in the domain and codomain of the operations of an adjoint
triple we could have three different posets, thus providing a more flexible
language to a potential user. Furthermore, they satisfy the usual mono-
tonicity properties although no boundary condition is required. In [38]
more general examples of adjoint triples are given.

Clearly, the left-continuous t-norms, such as the Gödel, product and
 Lukasiewicz t-norms [28], together with their residuated implications form
adjoint triples. Interesting non-commutative operators can also be consid-
ered, as the operator &: [0, 1]× [0, 1]→ [0, 1] defined as:

&(x, y) = x2y

for all x, y ∈ [0, 1], which considers the variable evaluated on the right
side more important than in the left side.1 The residuated implications

1Note that x2 ≤ x, for all x ∈ [0, 1].
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↙ : [0, 1] × [0, 1] → [0, 1] and ↖ : [0, 1] × [0, 1] → [0, 1] are defined for all
x, y, z ∈ [0, 1] as:

z ↙ y = min{1,
√

z/y}
z ↖ x = min{1, z/x}

The following property of adjoint triples shows how the adjoint implica-
tions can be defined from the conjunctor. In particular, this property proves
the uniqueness of the implications associated with an adjoint conjunctor,
which will be used later.

Proposition 8 ([10]). Given three lattices (L1,⪯1), (L2,⪯2), (L3,⪯3) and
an adjoint triple (&,↙,↖) w.r.t. L1, L2, L3, we have that

z ↙ y = max{x′ ∈ L1 | x′
& y ⪯3 z}

z ↖ x = max{y′ ∈ L2 | x& y′ ⪯3 z}

for all x ∈ L1, y ∈ L2 and z ∈ L3.

Note that if the conjunctor of an adjoint triple is commutative, then the
corresponding residuated implications coincide [10].

Other interesting examples of left adjoint pairs, whose conjunctors also
are commutative, are given in the  Lukasiewicz family.

Definition 9. Given α ∈ [0, 1], the operations &α,↖α : [0, 1] × [0, 1] →
[0, 1], defined by

x&α y = 1+α
√

max{0, x1+α + y1+α − 1}

z ↖α x = 1+α
√

min{1, 1 + z1+α − x1+α}

for all x, y, z ∈ [0, 1], form the left adjoint pair (&α,↖α). The set {(&α,↖α

)}α∈[0,1] will be called  Lukasiewicz family.

Adjoint triples are the basic operations of a remarkable mathematical
tool for analyzing relational databases and representing conceptual knowl-
edge in a (fuzzy) formal way, which is known as multi-adjoint concept lat-
tice [37].
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2.3. Multi-adjoint concept lattices

In formal concept analysis, the concepts are the basic units of infor-
mation obtained from a given database. The operations used in order to
compute these minimal pieces of information are called concept-forming
operations and adjoint triples are considered in the definition of these fun-
damental operations. In this framework, we need to consider that (P1,≤1)
and (P2,≤2) in Definition 7 are complete lattices [37]. The notion of multi-
adjoint frame and context are given below.

Definition 10 ([37]). A multi-adjoint frame L is a tuple

(L1, L2, P,⪯1,⪯2,≤,&1,↙1,↖1, . . . ,&n,↙n,↖n)

where (L1,⪯1) and (L2,⪯2) are complete lattices, (P,≤) is a poset and,
for each i ∈ {1, . . . , n}, (&i,↙i,↖i) is an adjoint triple w.r.t. L1, L2, P .
Multi-adjoint frames are denoted as (L1, L2, P,&1, . . . ,&n).

Definition 11 ([37]). Let (L1, L2, P,&1, . . . ,&n) be a multi-adjoint frame,
a context is a tuple (A,B,R, σ) such that A and B are non-empty sets
(usually interpreted as attributes and objects, respectively), R is a P -fuzzy
relation R : A × B → P and σ : A × B → {1, . . . , n} is a mapping that
associates any element in A× B with some particular adjoint triple in the
frame.

Given a multi-adjoint frame and a context for that frame, the concept-
forming operations are denoted2 as ↑σ : LB

2 −→ LA
1 and ↓σ : LA

1 −→ LB
2 and

are defined, for all g ∈ LB
2 , f ∈ LA

1 and a ∈ A, b ∈ B, as

g↑σ(a)=inf{R(a, b)↙σ(a,b) g(b) | b ∈ B} (3)

f ↓σ(b)=inf{R(a, b)↖σ(a,b) f(a) | a ∈ A} (4)

Notice that these operators depend on the selection of implications of
the adjoint triples offered by the mapping σ [18]. As in the classical case,
these concept-forming operations form a Galois connection [37], and the
notion of concept is defined as usual: a multi-adjoint concept is a pair ⟨g, f⟩
satisfying that g ∈ LB

2 , f ∈ LA
1 and that g↑σ = f and f ↓σ = g; where (↑σ , ↓

σ
)

is the Galois connection defined above.

2LB
2 and LA

1 denote the set of fuzzy subsets g : B → L2, f : A→ L1, respectively.
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Definition 12. The multi-adjoint concept lattice associated with a multi-
adjoint frame (L1, L2, P,&1, . . . ,&n) and a context (A,B,R, σ) is the set

M = {⟨g, f⟩ | g ∈ LB
2 , f ∈ LA

1 and g↑σ = f, f ↓σ = g}

in which the ordering is defined by ⟨g1, f1⟩ ⪯ ⟨g2, f2⟩ if and only if g1 ⪯2 g2

(or equivalently, f2 ⪯1 f1).

From now on, in order to simplify the notation, we will write ↑ and ↓

instead of ↑σ and ↓σ , respectively.
As we commented previously, one important feature of this FCA frame-

work is that different degrees of preference on the objects and attributes
can be established throughout the mapping σ, as it was shown in [37] and
this paper will continue studying. Indeed, the operator considered in the
definition of the concept-forming operators are the residuated implications
(Expressions 3 and 4) [18], and so the ordering among them will give the
possibility of defining different degrees of preference. Next, a small example
will be presented in order to illustrate this feature.

Example 13. In a factory, it is required to select the best worker for a
specific task. Specifically, we have two workers B = {b1, b2}, two capaci-
ties A = {a1, a2}, and the degrees of expertise in each capacity, which is
represented by the relation R given in Table 1.

Table 1: Relation R of Example 13.

R b1 b2

a1 0.5 0.5
a2 0.7 0.3

Hence, if the manager needs a worker with at least 70% of expertise
in both capacities, we can apply FCA to this small problem. For modeling
the problem, we will consider the multi-adjoint frame ([0, 1],≤,&G,&P,& L),
where &G,&P,& L are the Gödel, product and  Lukasiewicz t-norms [28], and
the context (A,B,R, σ), where σ is constantly the Gödel triple.

Therefore, for answering the question, we consider the fuzzy set f : A→
[0, 1], defined as f(a1) = 0.7, f(a2) = 0.7, and we compute the following
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values:

f ↓σ(b1) = inf{R(a1, b1)↖G f(a1), R(a2, b1)↖G f(a2)}
= inf{0.5↖G 0.7, 0.5↖G 0.7}
= inf{0.5, 0.5} = 0.5

f ↓σ(b2) = inf{R(a1, b2)↖G f(a1), R(a2, b2)↖G f(a2)}
= inf{0.7↖G 0.7, 0.3↖G 0.7}
= inf{1, 0.3} = 0.3

As a consequence, the best worker satisfying the requirements is b1.
Now, if the manager would prefer worker b2, because for example he/she
has some recommendation letter or good references, the only way for ob-
taining a greater value for it, with no change in the context is to modify
the implication operator. We can consider an implication different from the
Gödel one, which gives greater values, that is, an implication↖, such that,
z ↖G y ≤ z ↖ y, for all z, y ∈ [0, 1]. For example, we could consider the
product implication ↖P, which satisfies ↖G≤↖P. In this case, the map-
ping σ1 : A × B → {G,P,  L} is defined as σ1(a, b1) = G and σ1(a, b2) = P,
for all a ∈ A.

Therefore, we obtain that

f ↓σ1 (b1) = inf{R(a1, b1)↖G f(a1), R(a2, b1)↖G f(a2)}
= inf{0.5↖G 0.7, 0.5↖G 0.7}
= inf{0.5, 0.5} = 0.5

f ↓σ1 (b2) = inf{R(a1, b2)↖P f(a1), R(a2, b2)↖P f(a2)}
= inf{0.7↖P 0.7, 0.3↖P 0.7}
= inf{1, 0.3/0.7} = 3/7

In this case, we also have that f ↓σ1 (b2) = 3/7 ≤ 0.5 = f ↓σ1 (b1). This
means that the manager can prefer another worker, a greater value is ob-
tained, but this is not enough to be selected, that is, the user gives a pref-
erence, but not a commitment. This point of view is very interesting, since
we continue considering both workers instead of removing some of them.

Finally, if the manager has a strong preference with respect to worker
b2, then we can chose the  Lukasiewicz implication  L instead of the Gödel
one, since ↖G≤↖P≤↖ L. Hence, we consider the mapping σ2 : A × B →
{G,P,  L} defined as σ2(a, b1) = G and σ2(a, b2) =  L, for all a ∈ A.
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Therefore, we obtain that

f ↓σ2 (b1) = inf{R(a1, b1)↖G f(a1), R(a2, b1)↖G f(a2)}
= inf{0.5↖G 0.7, 0.5↖G 0.7}
= inf{0.5, 0.5} = 0.5

f ↓σ2 (b2) = inf{R(a1, b2)↖ L f(a1), R(a2, b2)↖ L f(a2)}
= inf{0.7↖ L 0.7, 0.3↖ L 0.7}
= inf{1, 0.6} = 0.6

As a consequence, in this strong preference case, worker b2 will be se-
lected.

Based on the Miller’s Law, the following section will study a discrete
multi-adjoint frame and a family of implications to be associated with dif-
ferent preference degrees that a user can consider. Anyway, the preferences
could not affect the final result as we have shown above and we will see in
the example of Section 4.

3. A theoretical study of a discrete multi-adjoint frame

This section will follow Miller’s Law in order to study a family of impli-
cations and the relation to degrees of preference (semantic labels) so that
a particular user can choose the most convenient implications for a specific
problem in which multi-adjoint concept lattices will be used and degrees
of preference among the attributes (or objects) will be considered. Since a
finite scale is required, adjoint triples on finite domains will be considered
preserving the main properties of discrete t-norms. The following section
will present interesting discrete adjoint triples satisfying this goal.

3.1. Discrete adjoint triples

This section will start showing that discrete t-norms introduced in Lemma 5
have a residuated implication, which together form a left adjoint pair. These
operations will be used later.

Lemma 14. Let k ∈ Z, l ∈ N, and consider the index set I = {k, k +
1, . . . , k + l}. The operations &L,↖L : I × I → I defined as:

i&L j = max{k, i + j − (k + l)}
h↖L i = min{k + l, h− i + k + l}

for all i, j, h ∈ I, form a left adjoint pair with respect to I.
11



Proof. The operators straightforwardly satisfy the adjointness property
(Definition 7).

Now, proper discrete adjoint triples will be presented from t-norms con-
sidering regular partitions of [0, 1] [38]. For instance, [0, 1]2 = {0, 0.5, 1}
splits the unit interval into two pieces.

A discretization of a left-continuous t-norm T : [0, 1] × [0, 1] → [0, 1] is,
e.g., the operator T ∗ : [0, 1]n × [0, 1]m → [0, 1]k, where n,m, k ∈ N, and
which is defined, for any x ∈ [0, 1]n and y ∈ [0, 1]m, as:

T ∗(x, y) =
⌈k · T (x, y)⌉

k

where ⌈ ⌉ is the ceiling function.
For this operation, the corresponding residuated implications↙∗ : [0, 1]k×

[0, 1]m → [0, 1]n and ↖∗ : [0, 1]k × [0, 1]n → [0, 1]m are defined as:

z ↙∗ y =
⌊n · (z ← y)⌋

n
z ↖∗ x =

⌊m · (z ← x)⌋
m

where ⌊ ⌋ is the floor function and ← is the residuated implication of the
t-norm T . The triple (T ∗,↙∗,↖∗) is an adjoint triple, where the operation
T ∗ could be neither commutative nor associative.

The following example shows the particular case of the  Lukasiewicz t-
norm.

Example 15. A discretization of the  Lukasiewicz t-norm is the operation

&∗
L : [0, 1]20× [0, 1]8 → [0, 1]100 defined, for any x ∈ [0, 1]20 and y ∈ [0, 1]8 as:

x&
∗
L y =

⌈100 ·max{0, x + y − 1}⌉
100

whose residuated implications↙∗
L : [0, 1]100×[0, 1]8 → [0, 1]20,↖∗

L : [0, 1]100×
[0, 1]20 → [0, 1]8 are defined as:

z ↙∗
L y =

⌊20 ·min{1, 1− y + z}⌋
20

z ↖∗
L x =

⌊8 ·min{1, 1− x + z}⌋
8

Therefore, the triple (&∗
L,↙∗

L,↖∗
L) is an adjoint triple and the operation

&∗
L is neither commutative nor associative. Similar adjoint triples can be

obtained from the Gödel and product t-norms.
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This procedure can also be applied to the  Lukasiewicz family introduced
in Definition 9, obtaining a discrete adjoint triple family depending on α ∈
[0, 1].

3.2. The discrete multi-adjoint frame

As it was previously commented, the adjoint implications of the adjoint
triples play a key role in the definition of the concept-forming operators.
Therefore, the study of families of discrete implications is fundamental for
introducing a discrete FFCA framework. There exist several possible fam-
ilies of implications, from a usual family of residuated implications (such
as the ones obtained from the  Lukasiewicz family or the divisible discrete
t-norms) to an arbitrary subset of t-norms. However, the selection of the
best family is not straightforward. This section will show that an inter-
esting family is obtained from a subset of implications of divisible discrete
t-norms. Nevertheless, not every subset of implications of divisible discrete
t-norms provides a suitable family, as the following example shows.

Example 16. Let C4 = {x1, x2, x3, x4} be a finite chain such that x1 <
x2 < x3 < x4 and consider the divisible discrete t-norms Ti : C4×C4 → C4,
with i ∈ {1, 2, 3, 4}, defined in Table 2.

Table 2: Definitions of Ti

T1 x1 x2 x3 x4

x1 x1 x1 x1 x1

x2 x1 x1 x1 x2

x3 x1 x1 x2 x3

x4 x1 x2 x3 x4

T2 x1 x2 x3 x4

x1 x1 x1 x1 x1

x2 x1 x2 x2 x2

x3 x1 x2 x2 x3

x4 x1 x2 x3 x4

T3 x1 x2 x3 x4

x1 x1 x1 x1 x1

x2 x1 x1 x2 x2

x3 x1 x2 x3 x3

x4 x1 x2 x3 x4

T4 x1 x2 x3 x4

x1 x1 x1 x1 x1

x2 x1 x2 x2 x2

x3 x1 x2 x3 x3

x4 x1 x2 x3 x4

13



Note that all these t-norms have x1 and x4 as idempotent elements.
Furthermore, x2 is an idempotent element of T2, x3 is idempotent of T3 and
x2, x3 are idempotent elements of T4.

The following result shows the uniqueness of these t-norms.

Proposition 17. The operators T1, T2, T3, and T4 are the unique divisible
discrete t-norms that can be defined on the finite chain C4 = {x1, x2, x3, x4}.

Proof. The proof follows from Proposition 6, since the divisible discrete
t-norms are completely determined by the idempotent elements.

The following example presents the residuated implications of these t-
norms.

Example 18. In the framework of Example 16, Table 3 shows the defini-
tions of the corresponding residuated implications↖Ti

: C4×C4 → C4 with
i ∈ {1, 2, 3, 4}.

Table 3: Definitions of ↖Ti

↖T1 x1 x2 x3 x4

x1 x4 x3 x2 x1

x2 x4 x4 x3 x2

x3 x4 x4 x4 x3

x4 x4 x4 x4 x4

↖T2 x1 x2 x3 x4

x1 x4 x1 x1 x1

x2 x4 x4 x3 x2

x3 x4 x4 x4 x3

x4 x4 x4 x4 x4

↖T3 x1 x2 x3 x4

x1 x4 x2 x1 x1

x2 x4 x4 x2 x2

x3 x4 x4 x4 x3

x4 x4 x4 x4 x4

↖T4 x1 x2 x3 x4

x1 x4 x1 x1 x1

x2 x4 x4 x2 x2

x3 x4 x4 x4 x3

x4 x4 x4 x4 x4

Considering the definitions of ↖Ti
and the point wise ordering, we have

that↖T4<↖T2<↖T1 and↖T4<↖T3<↖T1 , where↖T2 and↖T3 are incom-
parable operations according to Lemma 2, obtaining the following Hasse
diagram:

14



↖T4

↖T3↖T2

↖T1

Therefore, it is not enough to have a linear ordering among the t-norms
in order to ensure a chain in the corresponding residuated implications.
Hence, Lemma 3 should be considered for this goal. Moreover, since only
four operators can be considered, in which the null and the neutral element
are included, very few possibilities exist to associate the preference degrees
of a user with them. Hence, more truth values (instead of C4) would be
necessary for a more proper modeling.

The standard number of values provided by Miller’s Law is seven. Clearly,
in this case, more divisible discrete t-norms can be defined. Indeed, when
we consider chains with this number of values, by Lemma 3, we can ensure
chains of implications with six different elements. Therefore, the user could
consider six different “preference” degrees a priori.

Consequently, in order to obtain this chain of implications associated
with divisible discrete t-norms, by Lemma 3, we should fix a chain of divis-
ible discrete t-norms: T1, . . . , T6, such that Idem(Ti) ⊆ Idem(Ti+1), for all
i ∈ {1, . . . , 5}.

We have two natural ways for defining this chain:3 fixing the idempo-
tent elements in the divisible discrete t-norms (1) from the smallest one,
besides the minimum one, that is x2, or (2) from the greatest one besides
the maximum one, that is x6. Due to the residuated implication ↙ of a
left-continuous t-norm T satisfies:

z ↙ y = max{x ∈ [0, 1]6 | T (x, y) ≤ z}

for all y, z ∈ [0, 1]6, the second option provides us with more different impli-
cations, because of the divisible discrete t-norms change from the greatest
values if the idempotent elements are fixed from the greatest ones. For ex-
ample, in Example 16, the chain corresponding to option (1) is T1 < T2 < T4,
where T2 fixes as idempotent x2 (besides x1 and x7). This sequence provides

3Notice that every divisible discrete t-norm has the minimum (x1) and maximum (x7)
elements in the set as idempotent elements.

15



the chain of implications: ↖T4<↖T2<↖T1 , where the differences among the
implications ↖T4 and ↖T2 are a single position (see Table 3), and between
↖T2 and ↖T1 there are two differences.

On the other hand, the chain associated with option (2) is T1 < T3 <
T4, where T3 fixes x3 as idempotent element, and obtaining the chain:
↖T4<↖T3<↖T1 , where the differences among the implications ↖T4 and
↖T3 are a single position, and between ↖T2 and ↖T1 the values of three
positions change. These differences are clearly more important when the
lattice increases, such as, when we will consider C7 instead of C4, as we
can see in Table 4, in which the differences between ↖T1 and ↖T2 are 15,
but between ↖T1 and ↖T ′

2
are only 5. Notice that it is more important

for representing different degrees of preference that the number of positions
change than the values in each position.

Thus, the chain obtained from option (2) on the granular interval [0, 1]6,
that is, fixing the idempotent elements in the divisible discrete t-norms from
x6 to x2, will provide a proper set of implications to be studied as a possible
family to represent different degrees of preferences in FCA.

In the next section, we will introduce two interesting properties of divis-
ible discrete t-norms that will be useful in computations.

3.3. Properties of the residuated implications of divisible discrete t-norms

The idempotent elements of a divisible discrete t-norm are fundamental,
indeed, they determine the behaviour of the t-norm, as Proposition 6 proved.
Therefore, they will have a direct impact in the definition of the residuated
implications. The following result shows how the idempotent elements of a
divisible discrete t-norm determines its residuated implication.

Theorem 19. Given a finite chain Cn = {x1, x2, . . . , xn} with n ∈ N such
that x1 < x2 < · · · < xn and a divisible discrete t-norm T : Cn × Cn → Cn

together with its residuated implication ↖T : Cn × Cn → Cn, we have that

(a) If xi is an idempotent element of T , with i ∈ {2, . . . , n}, then xi−1 ↖T

xi = xi−1.

(b) If xk and xl are consecutive idempotent elements of T then the equality
xi ↖T xj = xi−j+l holds, for all (xi, xj) ∈ [xk, xl] × [xk, xl], with
i + 1 ≤ j.

Proof. First of all, we will prove the first statement. By Proposition 8,
we have that:

xi−1 ↖T xi = max{xh ∈ Cn | T (xi, xh) ≤ xi−1}
16



Table 4: Example of t-norms and residuated implications in [0, 1]6

T1 0 1/6 2/6 3/6 4/6 5/6 1
0 0 0 0 0 0 0 0

1/6 0 0 0 0 0 0 1/6

2/6 0 0 0 0 0 1/6 2/6

3/6 0 0 0 0 1/6 2/6 3/6

4/6 0 0 0 1/6 2/6 3/6 4/6

5/6 0 0 1/6 2/6 3/6 4/6 5/6

1 0 1/6 2/6 3/6 4/6 5/6 1

↙T1 0 1/6 2/6 3/6 4/6 5/6 1
0 1 5/6 4/6 3/6 2/6 1/6 0

1/6 1 1 5/6 4/6 3/6 2/6 1/6

2/6 1 1 1 5/6 4/6 3/6 2/6

3/6 1 1 1 1 5/6 4/6 3/6

4/6 1 1 1 1 1 5/6 4/6

5/6 1 1 1 1 1 1 5/6

1 1 1 1 1 1 1 1

T2 0 1/6 2/6 3/6 4/6 5/6 1
0 0 0 0 0 0 0 0

1/6 0 0 0 0 0 1/6 1/6

2/6 0 0 0 0 1/6 2/6 2/6

3/6 0 0 0 1/6 2/6 3/6 3/6

4/6 0 0 1/6 2/6 3/6 4/6 4/6

5/6 0 1/6 2/6 3/6 4/6 5/6 5/6

1 0 1/6 2/6 3/6 4/6 5/6 1

↙T2 0 1/6 2/6 3/6 4/6 5/6 1
0 1 4/6 3/6 2/6 1/6 0 0

1/6 1 1 4/6 3/6 2/6 1/6 1/6

2/6 1 1 1 4/6 3/6 2/6 2/6

3/6 1 1 1 1 4/6 3/6 3/6

4/6 1 1 1 1 1 4/6 4/6

5/6 1 1 1 1 1 1 5/6

1 1 1 1 1 1 1 1

T ′
2 0 1/6 2/6 3/6 4/6 5/6 1

0 0 0 0 0 0 0 0
1/6 0 1/6 1/6 1/6 1/6 1/6 1/6

2/6 0 1/6 1/6 1/6 1/6 1/6 2/6

3/6 0 1/6 1/6 1/6 1/6 2/6 3/6

4/6 0 1/6 1/6 1/6 2/6 3/6 4/6

5/6 0 1/6 1/6 2/6 3/6 4/6 5/6

1 0 1/6 2/6 3/6 4/6 5/6 1

↙T ′
2 0 1/6 2/6 3/6 4/6 5/6 1

0 1 0 0 0 0 0 0
1/6 1 1 5/6 4/6 3/6 2/6 1/6

2/6 1 1 1 5/6 4/6 3/6 2/6

3/6 1 1 1 1 5/6 4/6 3/6

4/6 1 1 1 1 1 5/6 4/6

5/6 1 1 1 1 1 1 5/6

1 1 1 1 1 1 1 1

with i ∈ {2, . . . , n}.
Since xi is an idempotent element of T , the equality T (xi, xi) = xi holds.

In addition, T is order-preserving in the second argument, therefore we have
that the elements xh of Cn, such that T (xi, xh) ≤ xi−1, must satisfy that
xh < xi. Let us see that the supremum of these elements is xi−1.

As T is a divisible discrete t-norm and T (xi, xi) = xi, applying Def-
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inition 4, we obtain that T (xi, xi−1) = xq with i − 1 ≤ q ≤ i. Since
T is a t-norm, we have that T (xi, xi−1) ≤ min{xi, xi−1} = xi−1. Hence,
T (xi, xi−1) = xi−1. As a consequence,

xi−1 ↖T xi = max{xh ∈ Cn | T (xi, xh) ≤ xi−1} = xi−1

Now, the second statement will be proven. Given xi, xj ∈ [xk, xl], by
Proposition 8, we have that

xi ↖T xj = max{xh ∈ Cn | T (xj, xh) ≤ xi} .

We firstly prove that the elements xh′ ∈ {xh ∈ Cn | Ti(xj, xh) ≤ xi}
satisfy xh′ ≤ xl. If we assume that xl ≤ xh′ , by the monotonicity of T , we
obtain that

T (xj, xl) ≤ T (xj, xh′) ≤ xi .

On the other hand, by Proposition 6, the equality T (xj, xl) = xmax{k,j+l−l} =
xj holds. Hence, as a consequence of the two previous inequalities, we
obtain xj ≤ xi which contradicts the hypothesis i + 1 ≤ j. Therefore, we
can conclude that xh′ ≤ xl, for all xh′ ∈ {xh ∈ Cn | T (xj, xh) ≤ xi}.

Moreover, since T (xj, xk) = xk ≤ xi, we have xk ∈ {xh ∈ Cn | T (xj, xh) ≤
xi}, and so

xi ↖T xj = sup{xh ∈ Cn | T (xj, xh) ≤ xi}
= sup{xh ∈ Cn | T (xj, xh) ≤ xi, xk ≤ xh ≤ xl}
(1)
= sup{xh ∈ Cn | xmax{j+h−l,k} ≤ xi}
= xsup{h∈{k,...,l}|max{j+h−l,k}≤i}
(2)
= xi−j+l

where (1) follows from Proposition 6 and xj, xh ∈ [xk, xl], and (2) because
k ≤ i− j + l < l.

This result will be used in the following section in order to compute the
discrete divisible t-norms defined on the granular interval with seven values,
following Option (2) above.

3.4. Proposed family of implications and its relation to degrees of preference

As it was previously argued, a family of implications defined on the
granular interval with seven values will be considered. Specifically, the

18



Table 5: Definitions of divisible discrete t-norms Ti on [0, 1]6

T1 0 1/6 2/6 3/6 4/6 5/6 1
0 0 0 0 0 0 0 0

1/6 0 0 0 0 0 0 1/6

2/6 0 0 0 0 0 1/6 2/6

3/6 0 0 0 0 1/6 2/6 3/6

4/6 0 0 0 1/6 2/6 3/6 4/6

5/6 0 0 1/6 2/6 3/6 4/6 5/6

1 0 1/6 2/6 3/6 4/6 5/6 1

T2 0 1/6 2/6 3/6 4/6 5/6 1
0 0 0 0 0 0 0 0

1/6 0 0 0 0 0 1/6 1/6

2/6 0 0 0 0 1/6 2/6 2/6

3/6 0 0 0 1/6 2/6 3/6 3/6

4/6 0 0 1/6 2/6 3/6 4/6 4/6

5/6 0 1/6 2/6 3/6 4/6 5/6 5/6

1 0 1/6 2/6 3/6 4/6 5/6 1

T3 0 1/6 2/6 3/6 4/6 5/6 1
0 0 0 0 0 0 0 0

1/6 0 0 0 0 1/6 1/6 1/6

2/6 0 0 0 1/6 2/6 2/6 2/6

3/6 0 0 1/6 2/6 3/6 3/6 3/6

4/6 0 1/6 2/6 3/6 4/6 4/6 4/6

5/6 0 1/6 2/6 3/6 4/6 5/6 5/6

1 0 1/6 2/6 3/6 4/6 5/6 1

T4 0 1/6 2/6 3/6 4/6 5/6 1
0 0 0 0 0 0 0 0

1/6 0 0 0 0 1/6 1/6 1/6

2/6 0 0 1/6 2/6 2/6 2/6 2/6

3/6 0 1/6 2/6 3/6 3/6 3/6 3/6

4/6 0 1/6 2/6 3/6 4/6 4/6 4/6

5/6 0 1/6 2/6 3/6 4/6 5/6 5/6

1 0 1/6 2/6 3/6 4/6 5/6 1

T5 0 1/6 2/6 3/6 4/6 5/6 1
0 0 0 0 0 0 0 0

1/6 0 0 1/6 1/6 1/6 1/6 1/6

2/6 0 1/6 2/6 2/6 2/6 2/6 2/6

3/6 0 1/6 2/6 3/6 3/6 3/6 3/6

4/6 0 1/6 2/6 3/6 4/6 4/6 4/6

5/6 0 1/6 2/6 3/6 4/6 5/6 5/6

1 0 1/6 2/6 3/6 4/6 5/6 1

T6 0 1/6 2/6 3/6 4/6 5/6 1
0 0 0 0 0 0 0 0

1/6 0 1/6 1/6 1/6 1/6 1/6 1/6

2/6 0 1/6 2/6 2/6 2/6 2/6 2/6

3/6 0 1/6 2/6 3/6 3/6 3/6 3/6

4/6 0 1/6 2/6 3/6 4/6 4/6 4/6

5/6 0 1/6 2/6 3/6 4/6 5/6 5/6

1 0 1/6 2/6 3/6 4/6 5/6 1

regular partition of the unit interval [0, 1]6 and the residuated implications
of the t-norms Ti : [0, 1]6 × [0, 1]6 → [0, 1]6, with i ∈ {1, 2, 3, 4, 5, 6}, which
are defined in Tables 5 and 6, will be taken into account. It is easy to verify
that the operations Ti are divisible discrete t-norms.

Note that all these t-norms have 0 and 1 as idempotent elements, and
satisfy Lemma 3. Specifically, the sequence of idempotent elements is as
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Table 6: Definitions of the residuated implications ↖Ti on [0, 1]6

↖T1 0 1/6 2/6 3/6 4/6 5/6 1
0 1 5/6 4/6 3/6 2/6 1/6 0

1/6 1 1 5/6 4/6 3/6 2/6 1/6

2/6 1 1 1 5/6 4/6 3/6 2/6

3/6 1 1 1 1 5/6 4/6 3/6

4/6 1 1 1 1 1 5/6 4/6

5/6 1 1 1 1 1 1 5/6

1 1 1 1 1 1 1 1

↖T2 0 1/6 2/6 3/6 4/6 5/6 1
0 1 4/6 3/6 2/6 1/6 0 0

1/6 1 1 4/6 3/6 2/6 1/6 1/6

2/6 1 1 1 4/6 3/6 2/6 2/6

3/6 1 1 1 1 4/6 3/6 3/6

4/6 1 1 1 1 1 4/6 4/6

5/6 1 1 1 1 1 1 5/6

1 1 1 1 1 1 1 1

↖T3 0 1/6 2/6 3/6 4/6 5/6 1
0 1 3/6 2/6 1/6 0 0 0

1/6 1 1 3/6 2/6 1/6 1/6 1/6

2/6 1 1 1 3/6 2/6 2/6 2/6

3/6 1 1 1 1 3/6 3/6 3/6

4/6 1 1 1 1 1 4/6 4/6

5/6 1 1 1 1 1 1 5/6

1 1 1 1 1 1 1 1

↖T4 0 1/6 2/6 3/6 4/6 5/6 1
0 1 2/6 1/6 0 0 0 0

1/6 1 1 2/6 1/6 1/6 1/6 1/6

2/6 1 1 1 2/6 2/6 2/6 2/6

3/6 1 1 1 1 3/6 3/6 3/6

4/6 1 1 1 1 1 4/6 4/6

5/6 1 1 1 1 1 1 5/6

1 1 1 1 1 1 1 1

↖T5 0 1/6 2/6 3/6 4/6 5/6 1
0 1 1/6 0 0 0 0 0

1/6 1 1 1/6 1/6 1/6 1/6 1/6

2/6 1 1 1 2/6 2/6 2/6 2/6

3/6 1 1 1 1 3/6 3/6 3/6

4/6 1 1 1 1 1 4/6 4/6

5/6 1 1 1 1 1 1 5/6

1 1 1 1 1 1 1 1

↖T6 0 1/6 2/6 3/6 4/6 5/6 1
0 1 0 0 0 0 0 0

1/6 1 1 1/6 1/6 1/6 1/6 1/6

2/6 1 1 1 2/6 2/6 2/6 2/6

3/6 1 1 1 1 3/6 3/6 3/6

4/6 1 1 1 1 1 4/6 4/6

5/6 1 1 1 1 1 1 5/6

1 1 1 1 1 1 1 1

follows:

Idem(T1) = {0, 1}
Idem(T2) = {0, 5/6, 1}.
Idem(T3) = {0, 4/6, 5/6, 1}
Idem(T4) = {0, 3/6, 4/6, 5/6, 1}
Idem(T5) = {0, 2/6, 3/6, 4/6, 5/6, 1}
Idem(T6) = {0, 1/6, 2/6, 3/6, 4/6, 5/6, 1} = [0, 1]6
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Therefore, we can easily see that T1 < T2 < T3 < T4 < T5 < T6.
Moreover, considering the corresponding residuated implications ↖Ti

: C ×
C → C with i ∈ {1, 2, 3, 4, 5, 6}, we have that

↖T6<↖T5<↖T4<↖T3<↖T2<↖T1 (5)

Next, we will show that the residuated implications ↖Ti
differ signif-

icantly and so, they can be considered to represent different degrees of
preferences in FCA, as it will be shown in Table 9.

From now on, our goal consists of consistently mapping a small qualita-
tive scale of degrees of preferences into adjoint implications, following the
recommendation given in [19]:

“A small qualitative scale is cognitively easier to grasp than a
continuous value scale and thus more chance to the consensual”

To reach this goal, adjoint implications will be compared using two dis-
tance measures. Given two implications↖Ti

and↖Tj
, with i, j ∈ {1, . . . , 6},

the Manhattan distance between ↖Ti
and ↖Tj

is defined as

D1(↖Ti
,↖Tj

) =
∑

0≤l<k≤6

|(zl ↖Ti
xk)− (zl ↖Tj

xk)|

and the Euclidean distance is defined as

D2(↖Ti
,↖Tj

) =

√ ∑
0≤l<k≤6

((zl ↖Ti
xk)− (zl ↖Tj

xk))2

Notice that the consideration of both distances is important. Man-
hattan distance measures how many ‘steps’ (of one unit degree -1/6) exist
between two implications, whilst the Euclidean distance also takes into ac-
count whether in a position there is more than one step of difference. For
example, in the implication represented in Table 4, we noted that the dif-
ferences between ↖T1 and ↖T2 are 15 positions, that is, 15 increments in
steps of 1/6 from a value in the table of T2 to a value in the same posi-
tion in the table of T1, e.g. from (0 ↖T2

1/6) = 4/6 to (0 ↖T1
1/6) = 5/6,

we only have one increment. However, between ↖T1 and ↖T ′
2

only 5 po-
sition exist. Nevertheless, if we consider the Manhattan distance we have
D1(↖T1 ,↖T2) = 15, and D1(↖T1 ,↖T ′

2
) = 15, because the real number of

steps are 15 in both cases, although in the first difference is distributed
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among more positions, which is naturally better for defining a family of
implications for representing different degrees of preference in FCA.

Considering the Euclidean distance, the differences between both pairs
of implications is clearer, because it shows some uniformity among the dif-
ferences. We obtain that D2(↖T1 ,↖T2) =

√
15/62, and D2(↖T1 ,↖T ′

2
) =√

55/62, which show a better uniformity in the first comparison than in the
second one, that is, the differences between ↖T1 , and ↖T2 are divided into
more positions than the ones given to ↖T1 , and ↖T ′

2
. Thus, the goal is to

obtain a chain of implications, whose differences have a bigger number of
steps (great Manhattan distance) in as many positions as possible (small
Euclidean distance).

Table 7 shows the distances between two consecutive implications in the
chain introduced in (5). From this table, a suitable difference among the
implications holds, except with respect to the pairs T4 and T5, T5 and T6.
Hence, the implication T5 may be discarded.

Table 7: Manhattan distance D1 and Euclidean distance D2

D1 D2

|↖T1 − ↖T2 | 2.500 0.645
|↖T2 − ↖T3 | 1.666 0.527
|↖T3 − ↖T4 | 1.000 0.408
|↖T4 − ↖T5 | 0.500 0.288
|↖T5 − ↖T6 | 0.166 0.166

The implications from ↖T1 to ↖T6 are depicted from left to right in
the following graphics. Each of the rows corresponds to a fixed value of
the consequent (z), which provides the mappings z ↖Ti

: [0, 1]6 → [0, 1]6,
for all i ∈ {1, . . . , 6}. The values of the antecedent (x) are represented in
the horizontal axis whereas the values corresponding to the implications
(y) are given in the vertical axis. Specifically, if z = 0 is fixed in the six
implications we obtain the six restricted mappings on [0, 1]6 (with only one
argument) depicted below:
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Below the six implications are shown when z = 1/6 is fixed:

1/6↖T1
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1/6↖T4
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When z = 2/6, z = 3/6, z = 4/6, z = 5/6 and z = 1 are fixed, the
implications are depicted in Table 8.

Table 8: Implications related to z = 2/6, z = 3/6, z = 4/6, z = 5/6 and z = 1 (by rows).
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As a consequence, a relation between implications and degrees of pref-
erence can be provided. This is shown in Table 9.
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Table 9: Relation between implications and degrees of preference given by µP

Implication Preferences
↖T1 Strong preference
↖T2 Preference
↖T3 Normal
↖T4 Dislike
↖T6 Rejection

Definition 20. The family {↖T1 ,↖T2 ,↖T3 ,↖T4 ,↖T6} of residuated im-
plications associated with the divisible discrete t-norms Ti, with i ∈ {1, 2, 3, 4, 6}
will be called family of the five preference discrete implications on [0, 1]6
(5Pdi-family, in short).

Consequently, we can define the fuzzy notion of “preference” in FCA
throughout the membership function µP defined on the set of attributes/objects
to a small qualitative scale {strong preference, preference, normal, dislike,
rejection}, which can be identically understood by the user. Furthermore,
it is also justified how it can be mapped into a qualitative scale (the 5Pdi-
family).

The following section shows that the ‘uniformity’ in the differences, the
regularity in the distribution of the steps and the number of these steps are
proper features of this family.

3.5. Comparison with other families of implications

This section will compare the previous family with the dual one (Op-
tion (1)) and with the  Lukasiewicz implication family, which is another
interesting family that has been considered in several papers. For example,
in [14] the authors tried to consider it in order to avoid the noise in the data,
considering different noise levels determined by means of rough membership
functions.

Following a dual procedure to the one given to obtain the t-norms in
Table 5, we can obtain the t-norms T ∗

i : [0, 1]6 × [0, 1]6 → [0, 1]6, with i ∈
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{1, 2, 3, 4, 5, 6}, which have the following idempotent elements:

Idem(T1)={0, 1}
Idem(T2)={0, 1/6, 1}
Idem(T3)={0, 1/6, 2/6, 1}
Idem(T4)={0, 1/6, 2/6, 3/6, 1}
Idem(T5)={0, 1/6, 2/6, 3/6, 4/6, 1}
Idem(T6)={0, 1/6, 2/6, 3/6, 4/6, 5/6, 1} = [0, 1]6

From Table 10 we have that the number of steps between two consecutive
implications is the same as in Table 7, however, they are not uniform as the
Euclidean distances show.

Table 10: Manhattan distance D1 and Euclidean distance D2

D1 D2

|↖T1 − ↖T2 | 2.500 1.236
|↖T2 − ↖T3 | 1.666 0.913
|↖T3 − ↖T4 | 1.000 0.624
|↖T4 − ↖T5 | 0.500 0.373
|↖T5 − ↖T6 | 0.166 0.166

Therefore, this possibility provides a worse family than the proposed one
since more irregular differences arise.

The other family to be considered is the one given by the discretization
of the  Lukasiewicz implications in Lemma 14 on the granular interval [0, 1]6.
Although one can think that this family provides a big range of implications,
we see in Figure 1 the representation of the implications with α = 0 and
α = 1, which indicates that a remarkable difference between them, on the
granular interval [0, 1]6, does not exist. This fact shows that they are equal
except when x = 0 and x = 1/6, in which (small) differences are presented.
Therefore, the relations to the degrees of preference will not be very striking.
Specifically, the distances D1 and D2 between these extreme implications
are 1.666 and 0.666, respectively, which are values similar to only one step
in the 5Pdi-family (Table 7).

The distances D1 and D2 associated with the discretization of the  Lukasie-
wicz implications on [0, 1]6 have been computed and are shown in Table 11.
Comparing the obtained results with the ones given in Table 7, we have
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Figure 1: The discrete  Lukasiewicz implications with α = 0 (left) and α = 1 (right).

that the differences among them are smaller. As a consequence, a corre-
spondence between these implications and degrees of preference will not
provide a sufficient impact in the results, that is, the degrees of preference
will not be mapped into a suitable qualitative scale, sufficiently different
to interpret the cognitive meaning of the preferences. Thus, enough dif-
ferent implications cannot be considered to represent different (around 7)
preference degrees from the  Lukasiewicz implications family on [0, 1]6.

Table 11: Distances D1 and D2 associated with the  Lukasiewicz implications on [0, 1]6

D1 D2

|↖L0.0 − ↖L0.2| 0.0 0.0
|↖L0.2 − ↖L0.4| 0.666 0.333
|↖L0.4 − ↖L0.6| 0.166 0.166
|↖L0.6 − ↖L0.8| 0.500 0.288
|↖L0.8 − ↖L1.0| 0.333 0.236

4. Worked out example

This section considers the example introduced in [37], which is related
to the selection of a suitable journal to which a scientific paper can be
submitted.
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The following sets of attributes (parameters in the ISI Journal Citation
Report) and objects (ISI journals) were taken into account:

A = {Impact Factor, Immediacy Index,Cited Half-Life,Best Position}
B = {AMC,CAMWA,FSS, IEEE-FS, IJGS, IJUFKS}

where the “best position” means the best quartile of the different cate-
gories under which the journal is included, and the journals considered
are Applied Mathematics and Computation (AMC), Computer and Mathe-
matics with Applications (CAMWA), Fuzzy Sets and Systems (FSS), IEEE
transactions on Fuzzy Systems (IEEE-FS), International Journal of Gen-
eral Systems (IJGS), International Journal of Uncertainty Fuzziness and
Knowledge-based Systems (IJUFKS). We will consider the multi-adjoint
frame ([0, 1]6,≤, Ti), where Ti denotes the conjunctors defined in Section 3.4,
with i ∈ {1, 2, 3}. The fuzzy relation between them R : A × B → P is the
normalization to the unit interval [0, 1] of the information in the JCR, see
Table 12.

Table 12: Fuzzy relation between the objects and the attributes.

R AMC CAMWA FSS IEEE-FS IJGS IJUFKS
Impact Factor 2/6 1/6 4/6 5/6 3/6 2/6

Immediacy Index 1/6 0 2/6 1/6 1/6 0
Cited Half-Life 2/6 4/6 1 4/6 5/6 3/6

Best Position 4/6 3/6 1 1 3/6 2/6

In order to choose a suitable journal to submit the scientific paper, we
will consider the journals with a high impact factor, a medium immediacy
index, a relatively big half-life and with not a bad position in the listing
of the category. According to these criteria, we define the fuzzy notion of
suitability in the context (A,B,R, σ) by the fuzzy subset f : A → [0, 1]6
below:

f(Impact Factor) = 5/6, f(Immediacy Index) = 3/6,

f(Cited Half-Life) = 4/6, f(Best Position) = 3/6

We are interested in finding a multi-adjoint concept which represents the
suitable journal as defined by the fuzzy set f . In order to determine this
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concept, we will compute f ↓T3 for the t-norm T3 defined in Section 3.4.
Notice that the grades of the fuzzy sets f ↓T3 are interpreted as degrees of
preference, that is, f ↓T3 (b) represents an intensity of preference in favor of
object b ∈ B [4, 20]. Considering the concept-forming operations given in
Section 3.4, the required computation is:

f ↓T3 (AMC) = inf{R(a,AMC)↖T3 f(a) | a ∈ A}
= inf{2/6↖T3

5/6, 1/6↖T3
3/6, 2/6↖T3

4/6, 4/6↖T3
3/6}

= 2/6

Analogously, we carry out computations for the other journals:

f ↓T3 (AMC) = 2/6 f ↓T3 (FSS) = 3/6 f ↓T3 (IJGS) = 2/6

f ↓T3 (CAMWA) = 1/6 f ↓T3 (IEEE-FS) = 2/6 f ↓T3 (IJUFKS) = 1/6

Note that as no preference has been considered, that is, the implication
associated with the linguistic label normal has been assumed, that is, the
membership function µP is constantly normal. Indeed, if we take into ac-
count another degree of preference for all the journals, we will obtain the
same result as we see below.

The first column arises when µP is constantly the linguistic label strong
preference and the second one when it is constantly preference. In both
cases, although the values are different, the ranking is the same as it is
expected.

f ↓T1 (AMC) = 3/6 f ↓T2 (AMC) = 2/6

f ↓T1 (CAMWA) = 2/6 f ↓T2 (CAMWA) = 1/6

f ↓T1 (FSS) = 5/6 f ↓T2 (FSS) = 4/6

f ↓T1 (IEEE-FS) = 4/6 f ↓T2 (IEEE-FS) = 3/6

f ↓T1 (IJGS) = 4/6 f ↓T2 (IJGS) = 3/6

f ↓T1 (IJUFKS) = 3/6 f ↓T2 (IJUFKS) = 2/6

These results lead us to conclude the most suitable journal is FSS, when no
preference is considered among the set of objects. Note that, it is the same
conclusion obtained in [37].

Now, if the user prefers the journals in the Artificial Intelligence cate-
gory (IEEE-FS and IJUFKS), then (s)he must choose the linguistic label
preference for the journals in this category and normal for the rest of jour-
nals. Then, the membership function associated with the “preference” of
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the user is defined as:

µP(b) =

{
normal if b ∈ {AMC,CAMWA,FSS, IJGS}
preference if b ∈ {IEEE-FS, IJUFKS}

and, as a consequence, the system will automatically consider the con-
text (A,B,R, σ′), where σ′(b) = T3 for every b ∈ B1 and σ′(b) = T2

for every b ∈ B2, being B1 = {AMC,CAMWA,FSS, IJGS} and B2 =
{IEEE-FS, IJUFKS}.

f ↓T3 (AMC) = 2/6 f ↓T3 (FSS) = 3/6 f ↓T2 (IEEE-FS) = 3/6

f ↓T3 (CAMWA) = 1/6 f ↓T3 (IJGS) = 2/6 f ↓T2 (IJUFKS) = 2/6

Considering this particular preference degrees, the journals FSS and
IEEE-FS have the same degree of suitability.

If the user has a strong preference with respect to the Artificial Intel-
ligence category journal instead of a normal preference, the membership
function µP changes and so, in this case, the system assigns the t-norm T1

to every object in B2 and the obtained results indicate that the best journal
is IEEE-FS, according to our preferences.

f ↓T3 (AMC) = 2/6 f ↓T3 (FSS) = 3/6 f ↓T1 (IEEE-FS) = 4/6

f ↓T3 (CAMWA) = 1/6 f ↓T3 (IJGS) = 2/6 f ↓T1 (IJUFKS) = 3/6

Just as it was shown in [37], the fact that we assign a strong preference to
a specific subset of journal does not guarantee that the best choice belongs
to that subset. In this example, if we consider the following notion of
suitability:

f1(Impact Factor) = 4/6, f1(Immediacy Index) = 2/6,

f1(Cited Half-Life) = 3/6, f1(Best Position) = 3/6

we obtain the results listed below:

f ↓T3 (AMC) = 2/6 f ↓T3 (FSS) = 1 f ↓T1 (IEEE-FS) = 5/6

f ↓T3 (CAMWA) = 1/6 f ↓T3 (IJGS) = 3/6 f ↓T1 (IJUFKS) = 4/6

It is easy to observe that the best journal is FSS followed by IEEE-FS.
Consequently, our choice will depend on our preferences (definition of the
membership function µP) and also on our definition of suitable journal. This
level of flexibility and enrichment holds thanks to the consideration of the
multi-adjoint paradigm.
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5. Conclusions and future work

This paper has studied the fuzzy notion of “preference” in FCA, offering
an efficient family of implications (the 5Pdi-family), which can be consid-
ered to establish preferences among the attributes or/and the objects in
the general concept lattice framework of the multi-adjoint concept lattices.
Thanks to the detailed study, we have introduced a membership function
µP, providing a correspondence between this family and a small qualita-
tive scale of linguistic labels strong preference, preference, normal, dislike
and reject, which can identically be understood by several individual and
compared. The set of truth values has been bounded to seven following
the magic Miller’s Law, which offers that any user, with no knowledge on
fuzzy operations, can use the different degrees of preference in a practical
database in which the flexible multi-adjoint concept lattice can be used.
Moreover, we have shown several interesting properties of the idempotent
elements of a discrete divisible t-norm, which have been used to determine
the considered family of implications. We will also consider UCI datasets
to apply the developments presented in this paper.

Furthermore, other possible families of implications have been analyzed,
such as the  Lukasiewicz implication family, but they do not satisfy the
minimal required properties in order to offer a good correspondence with
the preference levels.

In the future, more properties and trends will be studied, such as the
non-commutative case. Furthermore, the 5Pdi-family will be applied to real
problems, such as the ones considered from our participation in the COST
Action DigForASP (CA17124), whose main goal is the application of math-
ematics, artificial intelligence and automatic reasoning tools to digital foren-
sic. In addition, the introduced structure will be exported and adapted to
other frameworks, such as Fuzzy Rough Set Theory [15], Property-Oriented
Concept Lattices and Object-Oriented Concept Lattices [33].

References

[1] C. Alcalde and A. Burusco. Reduction of the size of l-fuzzy contexts. a tool for dif-
ferential diagnoses of diseases. International Journal of General Systems, 48(7):692–
712, 2019.

[2] L. Antoni, S. Krajci, O. Kridlo, B. Macek, and L. Pisková. On heterogeneous formal
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Y. Yao, editors, Rough Sets, pages 331–341, Cham, 2016. Springer International
Publishing.

[12] M. E. Cornejo, J. Medina, and C. Rubio-Manzano. Formal Analysis of Solar Power
and Weather Data, pages 81–89. Springer International Publishing, Cham, 2022.

[13] M. E. Cornejo, J. Medina, and C. Rubio-Manzano. Linguistic Descriptions of Data
Via Fuzzy Formal Concept Analysis, pages 119–125. Springer International Pub-
lishing, Cham, 2022.

[14] C. Cornelis, J. Medina, and N. Verbiest. Multi-adjoint fuzzy rough sets. In Third
International Workshop on Rough Set Theory (RST 2011), 2011.

[15] C. Cornelis and J. Medina and N. Verbiest. Multi-adjoint fuzzy rough sets: Def-
inition, properties and attribute selection. International Journal of Approximate
Reasoning, 55:412–426, 2014.

[16] B. De Baets and R. Mesiar. Triangular norms on product lattices. Fuzzy Sets and
Systems, 104:61–75, 1999.

[17] B. De Baets and R. Mesiar. Discrete triangular norms. In S. Rodabaugh and
E. Klement, editors, Topological and Algebraic Structures in Fuzzy Sets, volume 20
of Trends in Logic, pages 389–400. Springer Netherlands, 2003.

[18] J. C. Dı́az-Moreno, J. Medina, and M. Ojeda-Aciego. On basic conditions to gener-
ate multi-adjoint concept lattices via Galois connections. International Journal of
General Systems, 43(2):149–161, 2014.

[19] D. Dubois. The role of fuzzy sets in decision sciences: Old techniques and new
directions. Fuzzy Sets and Systems, 184(1):3 – 28, 2011. Preference Modelling and
Decision Analysis (Selected Papers from EUROFUSE 2009).

[20] D. Dubois and H. Prade. The three semantics of fuzzy sets. Fuzzy Sets and Systems,
90(2):141 – 150, 1997. Fuzzy Sets: Where Do We Stand? Where Do We Go?

[21] D. Dubois and H. Prade. Gradualness, uncertainty and bipolarity: making sense of
fuzzy sets. Fuzzy sets and Systems, 192:3–24, 2012.

31



[22] Y. Fang, C. Gao, and Y. Yao. Granularity-driven sequential three-way decisions: a
cost-sensitive approach to classification. Information Sciences, 507:644–664, 2020.

[23] Forbes. The path to personalization. urlhttps://www.forbes.com/sites/insights-
treasuredata/2019/05/01/the-path-to-personalization/, 2019.

[24] L. Godo and C. Sierra. A new approach to connective generation in the framework
of expert systems using fuzzy logic. In Proceedings of the Eighteenth International
Symposium on Multiple-Valued Logic, 1988., pages 157–162, 1988.

[25] M. Govindarajan. Approaches and applications for sentiment analysis: A literature
review. Data Mining Approaches for Big Data and Sentiment Analysis in Social
Media,1–23, 2022.
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multi-adjoint logic programming. Lecture Notes in Artificial Intelligence, 3040:608–
617, 2004.

[39] Y. Mi, Y. Shi, J. Li, W. Liu, and M. Yan. Fuzzy-based concept learning method: Ex-
ploiting data with fuzzy conceptual clustering. IEEE Transactions on Cybernetics,
52(1):582–593, 2022.

[40] G. A. Miller. The magical number seven, plus or minus two: Some limits on our
capacity for processing information. Psychological Review, 63(2):81–87, 1956.

[41] J. Niu, D. Chen, J. Li, and H. Wang. Fuzzy rule-based classification method for
incremental rule learning. IEEE Transactions on Fuzzy Systems, 30(9):3748–3761,

32



2022.
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