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Attribute classification and reduct computation in
multi-adjoint concept lattices

Lubomir Antoni, M. Eugenia Cornejo, Jesús Medina, Eloı́sa Ramı́rez-Poussa

Abstract—The problem of reducing information in databases
is an important topic in Formal Concept Analysis, which has
been studied in several papers. In this work, we consider the
fuzzy environment of the multi-adjoint concept lattices, since it
is a general fuzzy framework that allows us to easily establish
degrees of preference on the elements of the considered database.
We introduce algorithms to discover the information contained in
the relational system. By means of these algorithms, we classify
the attributes of a multi-adjoint context, and build a minimal
subset of attributes preserving the information of the original
knowledge system.

Index Terms—Fuzzy sets, formal concept analysis, concept
lattice reduction

I. INTRODUCTION

Different areas such as software engineering [1], infor-
mation retrieval [2], [3], data mining [4], [5], knowledge
discovery [6], [7], [8], machine learning [9], [10] and fuzzy
rough sets theory [11], [12], [13], [14] handle databases with
helpful information for a multitude of real applications. The
treatment of such databases could be a complex task, because
they often include data that provide redundant information
what makes difficult the collection of relevant information in
which the previous areas are interested in. Therefore, it has
become indispensable to use tools that allow to process and
extract information from such databases. Several techniques
have been proposed to address the challenging tasks involving
many irrelevant and redundant data. Attribute selection has
become the focus for applications which include the acqui-
sition of spacial fuzzy decision rules to analyze social and
environmental causes of neural tube birth defects [15] or the
reductions of systems of fuzzy relation equations to simplify
the computation of their solutions [16].

Formal Concept Analysis (FCA) [17] is one of the branch
of mathematics that pursues to obtain knowledge from rela-
tional databases. Specifically, FCA organizes the information
contained in databases by means of a mathematical structure
called concept lattice. At the computational level, databases
containing data that does not provide extra information only
hinders the construction of the concept lattice. Consequently,
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such data should be deleted or obviated, as long as the
main information in the considered databases is preserved.
Attribute reduction is a fundamental part in FCA in charge of
selecting the main information and removing the unnecessary
and redundant one.

There exists a large amount of papers on this topic. Some
works deal with this problem by means of the use of tech-
niques from rough set theory. Liu et al study the reduction
of the concept lattices based on rough set theory and propose
two kinds of reduction methods for the concept lattices in [18].
First, they present the sufficient and necessary conditions for
justifying whether an attribute and an object are dispensable
or indispensable in the concept lattices. Based on the justi-
fying conditions, they propose a kind of multi-step attribute
reduction method and object reduction method for the concept
lattices, respectively. In [19], the authors propose the use of
notion of reduct considered in rough sets theory to reduce
formal context. Li [20] focuses on attribute reduction of formal
concepts via covering rough set theory. Shao and Zhang [21]
present algorithms for attribute and object reduction in concept
lattices. Attribute reduction methods based on discernibility
matrices are introduced by Zhang et al. [22] and improved
by Qi [23]. Dias and Vieira [24] present a survey on concept
lattices reduction.

The current papers in the literature are proposed in re-
strictive frameworks, such as in the classical - boolean - or
one-sided formal contexts, using thresholds, etc., or they are
focused on the reduction of the whole concept lattice (once it
is computed) instead of the set of attributes or objects.

This paper considers the multi-adjoint concept lattice envi-
ronment [25], [26] which provides a more flexible framework
that to allows us apply this tool to a wider range of situations,
as well as establishing preferences on the elements of the con-
sidered database. To know in more detail how the multi-adjoint
framework allows to assign preferences on the elements of
the database to be considered, readers are referred to [26].
In particular, we are going to consider the characterization
of meet-irreducible elements of a concept lattice and attribute
classification theorems given in [27], [28], in order to obtain
algorithms to compute reducts. Reducts are minimal subsets
of attributes containing the main information, that is, subsets
from which we can build a concept lattice isomorphic to the
original one. It is important to emphasize that we cannot
remove any attribute from a reduct because in such case the
isomorphism is not preserved. In addition, more than one
reduct can be obtained from a multi-adjoint context, and these
different reducts can have different cardinalities, as it was
proven in [28].
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In this paper, based on the strength and robustness of
theoretical results, we introduce several algorithms to classify
the set of attributes of a multi-adjoint context. From this
classification, another algorithm to obtain a reduct of the multi-
adjoint context is presented, which follows the philosophy
of the linear QUICKREDUCT II algorithm given in [29],
removing attributes that are not necessary from the original
database. A formal proof of this algorithm is also introduced.
The same study and algorithms work when the set of objects
needs to be reduced, to do that we only need to interchange
both sets, the set of attributes and the set of objects.

Furthermore, we present a comparison between our algo-
rithms and other algorithms given in the literature which also
chase the same goal. We will see that the attribute reduction
algorithms presented in this paper consider the most flexible
environment. As a consequence, this work brings novelty and
original advances on this research topic.

The paper is organized in the following manner: Section II
includes a brief summary with preliminary notions about
multi-adjoint concept lattices as well as different notions
and results corresponding to attribute reduction in this en-
vironment. Section III includes the algorithms to obtain the
classification of the set of attributes of a context. An algorithm
to compute reducts and some useful properties are presented in
Section IV. A useful example has been included to illustrate
all the algorithms introduced in this work. In Section V a
comparative theoretical study among our algorithms and other
related works is shown. We finish our study showing some
conclusions and prospects for future works in Section VI.

II. MULTI-ADJOINT CONCEPT LATTICES AND ATTRIBUTE
CLASSIFICATION

Multi-adjoint concept lattices framework uses as calculation
operators an interesting generalization of triangular norms and
their residuated implications [30], which are called adjoint
triples [31], [32].

Definition 1: Let (P1,≤1), (P2,≤2), (P3,≤3) be posets and
&: P1×P2 → P3, ↙ : P3×P2 → P1, ↖ : P3×P1 → P2 be
mappings, then (&,↙,↖) is an adjoint triple with respect to
P1, P2, P3 if:

x ≤1 z ↙ y iff x& y ≤3 z iff y ≤2 z ↖ x (1)

where x ∈ P1, y ∈ P2 and z ∈ P3. The condition (1) is called
adjoint property.

Once we have recalled the previous operators, the definitions
of multi-adjoint frame is given below.

Definition 2: A multi-adjoint frame is a tuple
(L1, L2, P,&1, . . . ,&n), where (L1,�1) and (L2,�2) are
complete lattices, (P,≤) is a poset and (&i,↙i,↖i) is an
adjoint triple with respect to L1, L2, P , for all i ∈ {1, . . . , n}.

Fixed a multi-adjoint frame, we can introduce the notion
of multi-adjoint context, which considers a relational database
with an extra mapping.

Definition 3: Let (L1, L2, P,&1, . . . ,&n) be a multi-adjoint
frame, a context is a tuple (A,B,R, σ) such that A and B are
non-empty sets (usually interpreted as attributes and objects,
respectively), R is a P -fuzzy relation R : A × B → P and

σ : A × B → {1, . . . , n} is a mapping which associates any
element in A×B with some particular adjoint triple.

In the multi-adjoint concept lattice environment, the
concept-forming operators ↑ : LB2 → LA1 and ↓ : LA1 → LB2
are defined as follows

g↑(a) = inf{R(a, b)↙σ(a,b) g(b) | b ∈ B} (2)
f↓(b) = inf{R(a, b)↖σ(a,b) f(a) | a ∈ A} (3)

for all g ∈ LB2 , f ∈ LA1 and a ∈ A, b ∈ B, where LB2 and
LA1 denote the set of mappings g : B → L2 and f : A→ L1,
respectively. We call multi-adjoint concepts to pairs 〈g, f〉,
where g ∈ LB2 is a fuzzy subset of objects and f ∈ LA1 is a
fuzzy subset of attributes, verifying the equalities g↑ = f and
f↓ = g. Specifically, we call extent to the first component of a
multi-adjoint concept g and intent to the second component f .
The extent and intent of a concept C are denoted by E(C) and
I(C), respectively. Note that the concept-forming operators
form an antitone Galois connection [26].

Definition 4: The multi-adjoint concept lattice associated
with a multi-adjoint frame (L1, L2, P,&1, . . . ,&n) and a
context (A,B,R, σ) given, is the set

M = {〈g, f〉 | g ∈ LB2 , f ∈ LA1 and g↑ = f, f↓ = g}

where the ordering is defined by 〈g1, f1〉 �
〈g2, f2〉 if and only if g1 �2 g2 (equivalently f2 �1 f1).

Characterizing the meet-irreducible elements of a multi-
adjoint concept lattice was a fundamental task in order to
categorize the attributes of the associated multi-adjoint context,
as it was showed in [33], [27]. Before including the attribute
classification theorems, we need to recall the notion of meet-
irreducible element and the characterization theorem of this
special type of concepts.

Definition 5: Given a lattice (L,�), such that ∧,∨ are the
meet and the join operators, and an element x ∈ L verifying

1) If L has a top element >, then x 6= >.
2) If x = y ∧ z, then x = y or x = z, for all y, z ∈ L.

we call x meet-irreducible (∧-irreducible) element of L.
Condition (2) is equivalent to

2′. If x < y and x < z, then x < y ∧ z, for all y, z ∈ L.
A join-irreducible (∨-irreducible) element of L is defined
dually.

According to the previous definition, we say that a con-
cept is a meet-irreducible element if cannot be expressed as
infimum of strictly greater concepts of the lattice.

The following specific family of fuzzy subsets of attributes
play an important role in the characterization theorem of meet-
irreducible elements.

Definition 6: For each a ∈ A, the fuzzy subsets of attributes
φa,x ∈ LA1 defined, for all x ∈ L1, as

φa,x(a′) =

{
x if a′ = a
⊥1 if a′ 6= a

will be called fuzzy-attributes, where ⊥1 is the minimum
element in L1. The set of all fuzzy-attributes will be denoted
as Φ = {φa,x | a ∈ A, x ∈ L1}.
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Theorem 1 ([27]): The set of ∧-irreducible elements ofM,
MF (A), is formed by the pairs 〈φ↓a,x, φ↓↑a,x〉 inM, with a ∈ A
and x ∈ L1, such that

φ↓a,x 6=
∧
{φ↓ai,xi

| φai,xi
∈ Φ, φ↓a,x ≺2 φ

↓
ai,xi
}

and φ↓a,x 6= g>2
, where >2 is the maximum element in L2 and

g>2
: B → L2 is the fuzzy subset defined as g>2

(b) = >2,
for all b ∈ B.

After introducing the characterization of meet-irreducible
elements of a multi-adjoint concept lattice, we need to re-
call other important notions and results associated with the
attribute classification of a multi-adjoint context. The first
definitions are the notions of consistent set and reduct [27].

Definition 7: A set of attributes Y ⊆ A is a consistent set
of (A,B,R, σ) if the following isomorphism holds:

M(Y,B,RY , σY×B) ∼=E M(A,B,R, σ)

This is equivalent to say that, for all 〈g, f〉 ∈ M(A,B,R, σ),
there exists a concept 〈g′, f ′〉 ∈ M(Y,B,RY , σY×B) such
that g = g′.

In addition, if the isomorphism does not hold when we
remove every attribute a ∈ Y , that is, if:

M(Y \ {a}, B,RY \{a}, σY \{a}×B) 6∼=E M(A,B,R, σ)

for all a ∈ Y , then Y is called reduct of (A,B,R, σ). Notice
that Y \ {a} is the relative complement of the element {a} in
Y , also called the set difference of Y and {a}.

The core of (A,B,R, σ) is the intersection of all the reducts
of (A,B,R, σ).

The following technical results are very useful in order
to demonstrate several results presented in Section IV. The
first one characterizes the consistent sets in the multi-adjoint
environment.

Lemma 1 ([27]): Y ⊆ A is a consistent set of (A,B,R, σ)
if and only if, for every 〈φ↓ai,xi

, φ↓↑ai,xi
〉 ∈MF (A), there exists

〈φ↓aj ,xj
, φ↓↑aj ,xj

〉 ∈MF (Y ), such that φ↓ai,xi
= φ↓aj ,xj

.
Following the same philosophy, the next result characterizes

the reducts associated with a multi-adjoint framework and a
multi-adjoint context.

Lemma 2 ([27]): Given a reduct Y ⊆ A of (A,B,R, σ).
For each attribute ai ∈ Y , there exists xi ∈ L1, such that
〈φ↓ai,xi

, φ↓↑ai,xi
〉 ∈ MF (A) and φ↓ai,xi

6= φ↓aj ,xj
, for all aj ∈

Y \ {ai} and xj ∈ L1.
Considering the reducts of the multi-adjoint context re-

lated to a multi-adjoint concept lattice, the following defi-
nition presents a reducts-based categorization of the set of
attributes A.

Definition 8: Given a formal context (A,B,R, σ) and the set
Y = {Y ⊆ A | Y is a reduct} of all reducts of (A,B,R, σ).
The set of attributes A can be divided into the following parts:

1) Absolutely necessary attributes (core attributes) Cf =⋂
Y ∈Y Y .

2) Relatively necessary attributes Kf = (
⋃
Y ∈Y Y ) \

(
⋂
Y ∈Y Y ).

3) Absolutely unnecessary attributes If = A \ (
⋃
Y ∈Y Y ).

The following definition will be useful to recall the three
attribute classification theorems proved in [28], as well as to
present the algorithms introduced along this paper.

Definition 9: Given a multi-adjoint frame
(L1, L2, P,&1, . . . ,&n), a context (A,B,R, σ) associated
with the concept lattice (M,�) and a concept C of (M,�),
the set of attributes generating C is defined as the set:

Atg(C) = {a ∈ A | there exists φa,x ∈ Φ

such that 〈φ↓a,x, φ↓↑a,x〉 = C}

The three classification theorems are recalled in the fol-
lowing. The first one characterizes the absolutely necessary
attributes of the formal context.

Theorem 2 ([28]): Given an attribute a ∈ A, we have that
a ∈ Cf if and only if there exists a meet-irreducible concept C
of (M,�) satisfying that a ∈ Atg(C) and card(Atg(C)) = 1.

The following one shows the characterization of the rela-
tively necessary atributes.

Theorem 3 ([28]): Given an attribute a ∈ A, we have that
a ∈ Kf if and only if a /∈ Cf and there exists C ∈ MF(A)
with a ∈ Atg(C) and card(Atg(C)) > 1, satisfying that

(
A \

Atg(C)
)
∪ {a} is a consistent set.

Finally, the last theorem shows the characterization of the
completely unnecessary attributes.

Theorem 4 ([28]): Given an attribute a ∈ A, we have that
a ∈ If if and only if, for every C ∈ MF(A), a /∈ Atg(C), or
if a ∈ Atg(C) then

(
A\Atg(C)

)
∪{a} is not a consistent set.

In the next section, we introduce the necessary algorithms
to obtain the set of meet-irreducible concepts associated with
a multi-adjoint context, and the classification of the attributes.

III. ALGORITHMS FOR THE ATTRIBUTE CLASSIFICATION
OF A MULTI-ADJOINT CONTEXT

To begin with, we present an auxiliar algorithm which will
be useful to obtain the set of irreducible elements of a given
multi-adjoint context. Specifically, Algorithm 1 returns a list
composed of pairs, such that each pair contains the extent of
a concept, C, generated from at least a fuzzy-attribute (the
first component is E(C)), together with the list of attributes
associated with such fuzzy-attributes (the second component
is Atg(C)). This composite list is denoted as Φ2.

This algorithm will be helpful in order to obtain the list of
∧-irreducible concepts since, according to Theorem 1, every
∧-irreducible element is generated from at least one fuzzy-
attribute. Specifically, from line 3 to line 7, the algorithm
takes into account every possible combination of attributes
a ∈ A and values x ∈ L1 and computes φ↓a,x. Line 8
includes the generated extension together with the associated
attribute in the set Φ2. Due to different fuzzy-attributes can
generate the same concept of the concept lattice, lines 9 to 14
are intended to avoid duplications, we search the elements
in Φ2 that match in the first component (that is, with the
same extension) and join the attributes that appears in the
second component. Although this module can be optimized
in different aspects, such as including the avoid duplications
in the first computation of Φ2, we have preferred to leave an
easier representation.

Let us show how this algorithm works in a particular
example.
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Algorithm 1: Computing Φ2

input : (A,B,R, σ), (L1, L2, P,&1, . . . ,&n)
output: Φ2

1 Φ2 := [];
2 φ↓a,x := [];
3 for each a ∈ A do
4 for each x ∈ L1 \ {⊥1} do
5 for each b ∈ B do
6 z = Compute(R(a, b)↖σ(a,b) x)
7 add z to φ↓a,x
8 add {(φ↓a,x, a)} to Φ2

9 for each (g, Y ) ∈ Φ2 do
10 for each (g′, Y ′) ∈ Φ2 \ {(g, Y )} do
11 if g = g′ then
12 remove {(g′, Y ′)} from Φ2

13 remove {(g, Y )} from Φ2

14 add {(g, Y ∪ Y ′)} to Φ2

15 return Φ2

Example 1: Let (L1, L2, L3,�,&∗G,&∗L) composed of reg-
ular partitions of the unit interval in 10, 4 and 5 pieces, that
is, L1 = [0, 1]10, L2 = [0, 1]4, L3 = [0, 1]5, respectively, and
the discretizations of the Gödel and Łukasiewicz conjunctors,
&∗G and &∗L, respectively (for more details, see [34]). The
considered context (A,B,R, σ) is composed of the set of
attributes A={Headache (H), Body aches (Ba), Fever (F),
Cough (C), Sore throat (St), Stuffy nose (Sn), Tiredness (T)},
the set of objects is composed of 3 patients B={James, Adam,
Lily}, the relation R : A×B → L3 displayed in Figure 1 and
the mapping σ is defined, for all a ∈ A and b ∈ B, as:

σ(a, b) =

{
a&∗L b if a ∈{H, C, St} and b ∈{James,Adam}
a&∗G b otherwise

Note that, we have assigned different operators to different ob-
jects and attributes of the considered context, the Łukasiewicz
adjoint triple is associated with certain symptoms of certain
patients and the Gödel adjoint triple is associated with another
patient. This fact let us give more importance to certain
symptoms in certain patients depending on, for example, the
medical history of each patient, which could be essential to
deliver a proper diagnosis of these patients.

Applying Algorithm 1, we obtain that Φ2 is composed of

R H Ba F C St Sn T

James 0.6 0.2 0.2 1 0.6 0.2 0

Adam 0.8 0.4 0.4 1 0.8 0.6 0.6

Lily 0.6 0.6 0.2 0 0 0 0

Fig. 1. Relation R and Hasse diagram of (M,�) of Example 1.

the following list of pairs:

(E(C0),Atg(C0)) =
(
{Adam/0.25}, {F}

)
(E(C1),Atg(C1)) =

(
{Adam/0.5}, {Sn,T}

)
(E(C2),Atg(C2)) =

(
{Adam/0.25,Lily/0.5}, {Ba}

)
(E(C4),Atg(C4)) =

(
{Adam/0.75, James/0.5}, {St}

)
(E(C5),Atg(C5)) =

(
{Adam}, {F, Sn,T}

)
(E(C7),Atg(C7)) =

(
{Adam, James/0.75}, {St}

)
(E(C8),Atg(C8)) =

(
{Adam/0.75, James/0.5,Lily/0.5}, {H}

)
(E(C9),Atg(C9)) =

(
{Adam, James}, {C, St, Sn}

)
(E(C10),Atg(C10)) =

(
{Adam, James/0.75,Lily/0.5}, {H}

)
(E(C11),Atg(C11)) =

(
{Adam, James,Lily}, {Ba, F,H}

)
(E(C13),Atg(C13)) =

(
{Adam,Lily}, {Ba}

)
(E(C14),Atg(C14)) =

(
{Adam/0.25,Lily}, {Ba}

)
As we previously commented, in Φ2 we can observe the

extents of all the concepts generated from fuzzy-attributes (on
the left), together with the subset of attributes from which
these extents are obtained (on the right). Note that, C3, C6

and C12 are not generated from fuzzy-attributes. �
However, not all extents included in the set Φ2 correspond

to extents of irreducible concepts. Thus, we need to eliminate
from Φ2 those extensions that do not correspond to irreducible
concepts, this procedure is carried out by Algorithm 2.

The output of Algorithm 2 is the set {(Ci,Atg(Ci)) | Ci ∈
MF (A)}, which is denoted as Φ2(MF ) because it is a subset
of Φ2. It is easy to check that this algorithm is also based
on Theorem 1 since it selects from Φ2 each extension that
cannot be expressed as infimum of extensions greater than
it. In particular, from line 3 to line 6, Algorithm 2 takes an
element (g, Y ) ∈ Φ2 and builds the upper bounds of the first
component of this element, denoting this set as UB. In line
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7 the algorithm checks if g is the infimum of UB, if it is
not, this element is stored in Φ2(MF ). Therefore, according
to Theorem 1, the output Φ2(MF ) only contain those elements
in Φ2 whose extents (first components of each pair) belong to
∧-irreducible concepts.

Algorithm 2: Computing Φ2(MF )

input : Φ2

output: Φ2(MF )

1 UB := ∅;
2 Φ2(MF ) := [];
3 for each (g, Y ) ∈ Φ2 do
4 for each (g′, Y ′) ∈ Φ2 \ {(g, Y )} do
5 if g < g′ then
6 add {g′} to UB

7 if g 6=
∧

UB then
8 add {(g, Y )} to Φ2(MF )

9 return Φ2(MF )

In the following example, Algorithm 2 is applied to the list
Φ2, obtained in Example 1.

Example 2: Considering the input Φ2 obtained from the
multi-adjoint frame and the context of Example 1, the output
Φ2(MF ) that arises applying Algorithm 2, is displayed below:

(E(C1),Atg(C1)) =
(
{Adam/0.5}, {Sn,T}

)
(E(C8),Atg(C8)) =

(
{Adam/0.75, James/0.5,Lily/0.5}, {H}

)
(E(C9),Atg(C9)) =

(
{Adam, James}, {C, St, Sn}

)
(E(C10),Atg(C10)) =

(
{Adam, James/0.75,Lily/0.5}, {H}

)
(E(C13),Atg(C13)) =

(
{Adam,Lily}, {Ba}

)
(E(C14),Atg(C14)) =

(
{Adam/0.25,Lily}, {Ba}

)
From the previous list and Figure 1, it is easy to check that ex-
tents contained in Φ2(MF ) are the extents of the ∧-irreducible
elements of the concept lattice. For example, we have that the
extent of C9, C10 and C11 are greater than the extent of C7,
hence they belong to UB (line 6) and the infimum is C7.
Therefore, (E(C7),Atg(C7)) =

(
{Adam, James/0.75}, {St}

)
is not added to Φ2(MF ). �

From the set Φ2(MF ) we can compute the set Cf by using
Algorithm 3. According to Theorem 2, we only need to know
the list of elements in Φ2(MF ) satisfying that the cardinality
of the second component is equal to one, as Algorithm 3 does.
Then, the attributes appearing in these elements form the core
of the context.

In the next example, we will compute the core set of the
context of Example 1.

Example 3: In order to obtain the set Cf , we consider as
input of Algorithm 3 the list Φ2(MF ) obtained in Example 2.
It is clear to see that the output of this algorithm indicates that
the set of absolutely necessary attributes is Cf = {H,Ba}. �

According to Theorems 3 and 4, in order to obtain the sets
Kf and If we need to make use of two auxiliary algorithms
because we need to take into account two important aspects:

1) We should be able to identify when a subset of attributes
D ⊆ A is consistent or not with respect to the set of

Algorithm 3: Computing Cf

input : Φ2(MF )
output: Cf

1 Cf := ∅;
2 for each (g, Y ) ∈ Φ2(MF ) do
3 if card(Y ) = 1 then
4 add Y to Cf

5 return Cf

meet-irreducible elements appearing in E ⊆ Φ2(MF ),
which is the aim of Algorithm 4. This algorithm tests
if every element in MF (A) can be generated from the
set D. To be allowed to do it, Algorithm 4 checks if
the set D has a non-empty intersection with the second
component of each element in Φ2(MF ). In the case that
an intersection is empty, that means that this irreducible
concept cannot be generated from the attribute contained
in D and, consequently, the set D is not a consistent set.

2) We do not have to consider those ∧-irreducible concepts
that can be obtained from the attributes in the core.
Thus, we need to create a filtered list that contains the
set of irreducible concepts that cannot be obtained from
attributes in Cf . This is the purpose of Algorithm 5,
which remove from the set Φ2(MF ) those pairs whose
second components contain any attribute in the core. The
resulting subset of Φ2(MF ) is denoted as Φ2

C(MF ).

Algorithm 4: CONSISTENCY(D,E)
input : D ⊆ A, E ⊆ Φ2(MF )
output: True or False

1 Consistency := True
2 break=False
3 for each (g, Y ) ∈ Φ2(MF ) and break=False do
4 if D

⋂
Y = ∅ then

5 Consistency = False
6 break=True

7 return Consistency

Algorithm 5: Computing Φ2
C(MF )

input : Cf , Φ2(MF )
output: Φ2

C(MF )

1 Φ2
C(MF ) := Φ2(MF );

2 for each (g, Y ) ∈ Φ2(MF ) do
3 if Cf

⋂
Y 6= ∅ then

4 remove {(g, Y )} from Φ2
C(MF )

5 return Φ2
C(MF )

In the following example, we remove from the list Φ2(MF )
obtained in Example 2 those elements whose second compo-
nent contains elements in the core.
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Example 4: From the list Φ2(MF ), obtained in Exam-
ple 2, and the subset of attributes in the core, obtained
in Example 3, we can apply Algorithm 5. This algorithm
provides the set Φ2

C(MF ), which is composed of the elements
({Adam/0.5}, {Sn,T}

)
and ({Adam, James}, {C,St,Sn}

)
. �

Once we have the auxiliary algorithms, we can present the
algorithm to compute the subsets of unnecessary attributes and
relatively necessary attributes. Algorithm 6 is based on the
attribute classification results given in Theorems 3 and 4.

Algorithm 6: Computing Kf and If
input : A, Cf , Φ2

C(MF )
output: Kf , If

1 If := ∅;
2 Kf := ∅;
3 A′ :=

⋃
{Y | (g, Y ) ∈ Φ2

C(MF )};
4 for each a ∈ A′ do
5 add a to Kf

6 break=False
7 for each (g, Y ) ∈ Φ2

C(MF ) and break=False do
8 if a ∈ Y then
9 if CONSISTENCY

(
(A′\Y )

⋃
{a},Φ2

C(MF)
)
=False

then
10 remove a from Kf

11 break=True

12 If = A \ {Cf

⋃
Kf}

13 return Kf , If

Considering again the example we are using to illustrate the
results obtained with the algorithms introduced in this section,
we obtain the subsets Kf and If from Algorithms 4 and 6.

Example 5: In Table I, we can observe the steps that are
carried out when we apply Algorithm 6 considering the inputs
we have obtained in the previous examples. In this case, the
input of Algorithm 6 is composed of the sets:

A = {H,Ba,F,C,St,Sn,T}
Cf = {H,Ba}
Φ2
C(MF )=

{(
{Adam/0.5},{Sn,T}

)
,
(
{Adam, James},{C,St,Sn}

)}
Taking into consideration the previous sets, we have that

A′ = {Sn,T,C,St}.
In this case, the final attribute classification is as follows:

Cf = {H,Ba}
Kf = {C,St,Sn,T}
If = {F}

�
In the following we present Algorithm 7, which supposes an

alternative option to Algorithm 4 and 6. This new algorithm
has the advantage that do not need to consider the auxiliar
Algorithm 4 to compute the subsets Kf and If and it can
obtain the final classification only from the filtered list of meet-
irreducible concepts (provided by Algorithm 5). Hence, we
obtain the final classification in a more direct way. In order to

understand the development of Algorithm 7, it is necessary to
introduce the following result.

Proposition 1: Let (L1, L2, P,&1, . . . ,&n) be a multi-
adjoint frame, a context (A,B,R, σ) and an attribute a ∈ A.
The attribute a ∈ If if and only if one of the following
statements holds:
• a /∈ Atg(C) for any concept C ∈MF (A).
• for all C ∈ MF (A), such that a ∈ Atg(C), there exists
C ′ ∈MF (A) satisfying that Atg(C ′) ⊆ Atg(C) \ {a}.
Proof: First of all, we will prove the first implication.

Applying Theorem 4 we straightforwardly obtain that a does
not generate any ∧-irreducible concept or, if a ∈ Atg(C), with
C ∈MF (A) then the set

(
A\Atg(C)

)
∪{a} is not a consistent

set. If
(
A\Atg(C)

)
∪{a} is not consistent then there exists at

least one ∧-irreducible concept C ′ ∈MF (A) which cannot be
generated from the attributes that belong to

(
A\Atg(C)

)
∪{a},

which is equivalent to say that Atg(C ′) ⊆ Atg(C) \ {a}.
Now, we will prove the opposite implication. If a /∈ Atg(C)

for any concept C ∈MF (A), by Theorem 4, we have that a ∈
If . Now, we suppose that for all C ∈ MF (A) such that a ∈
Atg(C), there exists C ′ ∈ MF (A) satisfying that Atg(C ′) ⊆
Atg(C)\{a}. In this case, we have that

(
A\Atg(C)

)
∪{a} is

not a consistent set because the concept C ′ cannot be generated
from the attributes in

(
A \ Atg(C)

)
∪ {a}. Consequently, by

Theorem 4, we conclude that a ∈ If .
Specifically, to obtain the sets Kf and If , Algorithm 7 also

considers the filtered list Φ2
C(MF ). Therefore, Algorithm 7

is based exclusively on the second item of the previous
result. In particular, from the perspective of the relatively
necessary attributes, the construction process of Kf considered
in Algorithm 7 is shown in the following lemma.

Lemma 3: Let (L1, L2, P,&1, . . . ,&n) be a multi-adjoint
frame, a context (A,B,R, σ) and one attribute a ∈ A. The
atribute a ∈ Kf if for each C ∈MF (A), such that a ∈ Atg(C)
the following statements hold:
• Atg(C)

⋂
Cf = ∅.

• There is no Ci ∈ MF (A), satisfying that Atg(Ci) ⊆
Atg(C) \ {a}.
Proof: If for each C ∈ MF (A), such that a ∈ Atg(C),

there is no Ci ∈MF (A), satisfying that Atg(Ci) ⊆ Atg(C) \
{a}, by Proposition 1 we have that a /∈ If . In addition, the
condition Atg(C)

⋂
Cf = ∅ means that a /∈ Cf . Consequently,

we can conclude that a ∈ Kf .
In line 11 of Algorithm 7 we can see whether Y ′′ ⊆ Y ′.

In such a case, applying Lemma 3, we have that a ∈ A′

is an unnecessary attribute and, consequently, this attribute is
removed from Kf in line 12.

In the following example, we specify how Algorithm 7
works when the same inputs, that were considered in Exam-
ple 5, are provided.

Example 6: As we have already mentioned, the inputs
coincide with those given in the previous example and, as
a consequence, the set A′ is also the same as the one shown
in Example 5. Table II shows step by step the procedure to
obtain the classification, according to Algorithm 7.

We can see in Table II that the number of loops that this
alternative algorithm requires to obtain the final classification
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TABLE I
ALGORITHM 6 APPLIED TO EXAMPLE 1

loop a (g, Y ) membership to Y CONSISTENCY(((A′ \ Y )
⋃
{a}),Φ2

C(MF)) Kf

1 Sn (g1, Y1) =
(
{Adam/0.5}, {Sn,T}

)
Sn ∈ Y1 CONSISTENCY({C, St, Sn},Φ2

C(MF))=True
(g2, Y2) =

(
{Adam, James}, {C, St, Sn}

)
Sn ∈ Y2 CONSISTENCY({Sn,T},Φ2

C(MF))=True {Sn}
2 T (g1, Y1) =

(
{Adam/0.5}, {Sn,T}

)
T ∈ Y1 CONSISTENCY({C, St,T},Φ2

C(MF))=True
(g2, Y2) =

(
{Adam, James}, {C, St, Sn}

)
T /∈ Y2 {Sn,T}

3 C (g1, Y1) =
(
{Adam/0.5}, {Sn,T}

)
C /∈ Y1

(g2, Y2) =
(
{Adam, James}, {C, St, Sn}

)
C ∈ Y2 CONSISTENCY({C,T},Φ2

C(MF))=True {Sn,T,C}
4 St (g1, Y1) =

(
{Adam/0.5}, {Sn,T}

)
St /∈ Y1

(g2, Y2) =
(
{Adam, James}, {C, St, Sn}

)
St ∈ Y2 CONSISTENCY({St,T},Φ2

C(MF))=True {Sn,T,C,St}
If = A \ {Cf

⋃
Kf} = {F}

Output:
Kf = {Sn,T,C, St}
If = {F}

Algorithm 7: Computing If and Kf

input : A, Cf , Φ2
C(MF )

output: If , Kf

1 If := ∅;
2 Kf := ∅;
3 A′ :=

⋃
{Y | (g, Y ) ∈ Φ2

C(MF )};
4 for each a ∈ A′ do
5 add a to Kf

6 break=False
7 for each (g, Y ) ∈ Φ2

C(MF ) and break=False do
8 if a ∈ Y then
9 Y ′ = Y \ a

10 for each (g′′, Y ′′) ∈ Φ2
C(MF ) and

break=False do
11 if Y ′′ ⊆ Y ′ then
12 remove a from Kf

13 break=True

14 If = A \ (Cf

⋃
Kf)

15 return If ,Kf

coincides with the number of loops required by Algorithm 6.
Clearly, applying Algorithm 7, we obtain the same attribute
classification that in the previous example. However, this time,
we avoid having to resort to an auxiliar algorithm (since
Algorithm 6 resorts to Algorithm 4). �

A categorization of the set of attributes of a multi-adjoint
context to absolutely necessary, relatively necessary and abso-
lutely unnecessary attributes help us to obtain reducts. These
reducts may decrease the computational complexity of the
concept lattice in a relevant way. In the next section, we will
present the algorithm to compute reducts of formal contexts
in the multi-adjoint environment.

IV. ALGORITHM TO COMPUTE REDUCTS OF A
MULTI-ADJOINT CONTEXT

As we have previously mentioned, the elimination of super-
fluous attributes is an essential procedure in order to reduce the
computational complexity to obtain the knowledge stored in a

relational dataset. In this section, we introduce an algorithm
to compute a reduct from a given multi-adjoint context.

The sets presented in the following will be useful in this
section. These sets were used in [28] to analyze reducts of
a multi-adjoint context. In this paper, we have removed the
subscripts f of the notation of these sets for the sake of
simplicity.

GCK = {Atg(C) | C ∈MF (A) such that Atg(C) ∩Kf 6= ∅
and Atg(C) ∩ Cf = ∅}

GC,IK = {Atg(C) \ If | Atg(C) ∈ GCK}

Notice that the set GCK coincides with the union of the
second components of the elements in Φ2

C(MF ), that is, it
can be also expressed as GCK =

⋃
{Y | (g, Y ) ∈ Φ2

C(MF )}.
Taking into account the outputs provided by the previous

algorithms, the set GC,IK can be obtained by means of Algo-
rithm 8.

Algorithm 8: Computing GC,IK

input : If , Φ2
C(MF )

output: GC,IK

1 GC,IK := [];
2 for each (g, Y ) ∈ Φ2

C(MF ) do
3 Y ′ = Y \ If
4 add {Y ′} to GC,IK

5 return GC,IK

Example 7: Considering as input of Algorithm 8 the subsets
obtained from the previous examples:

If = {F}
Φ2
C(MF )=

{(
{Adam/0.5},{Sn,T}

)
,
(
{Adam, James},{C,St,Sn}

)}
We obtain that GC,IK =

{
{Sn,T}, {C,St,Sn}

}
. This is because,

in this particular example, the second component of each
pair in Φ2

C(MF ) has an empty intersection with the subset
of attributes If . Therefore, according to the obtained attribute
classification, we have that GK = GCK = GC,IK . �

From now on, the elements belonging to GC,IK will be
denoted as Atg(C)K . In addition, we need to introduce the
following notations. We denote the particular elements of
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TABLE II
ALGORITHM 7 APPLIED TO EXAMPLE 1

loop a (g, Y ) membership to Y Y ′ = Y \ a inclusion in Y ′ Kf

1 Sn (g1, Y1) =
(
{Adam/0.5}, {Sn,T}

)
Sn ∈ Y1 {T} Y1 * Y ′

(g2, Y2) =
(
{Adam, James}, {C, St, Sn}

)
Sn ∈ Y2 {C,St} Y2 * Y ′ {Sn}

2 T (g1, Y1) =
(
{Adam/0.5}, {Sn,T}

)
T ∈ Y1 {Sn} Y1 * Y ′

(g2, Y2) =
(
{Adam, James}, {C, St, Sn}

)
T /∈ Y2 {Sn,T}

3 C (g1, Y1) =
(
{Adam/0.5}, {Sn,T}

)
C /∈ Y1

(g2, Y2) =
(
{Adam, James}, {C, St, Sn}

)
C ∈ Y2 {St, Sn} Y2 * Y ′ {Sn,T,C}

4 St (g1, Y1) =
(
{Adam/0.5}, {Sn,T}

)
St /∈ Y1

(g2, Y2) =
(
{Adam, James}, {C, St, Sn}

)
St ∈ Y2 {C, Sn} Y2 * Y ′ {Sn,T,C,St}

If = A \ {Cf
⋃

Kf} = {F}
Output:
Kf = {Sn,T,C, St}
If = {F}

the set of relatively necessary attributes by k1, k2, . . . , km,
i.e. Kf = {k1, k2, . . . , km} and the set of attributes A =
{a1, a2, . . . , an}, where m ≤ n.

For each relatively necessary attribute a ∈ Kf , we need
to count how many times the attribute a appears in elements
Atg(C)K ∈ GC,IK . Given H ⊆ GC,IK , we need to define the
following function qH : Kf → P(A) as follows:

qH(kj) = {Atg(C)K | Atg(C)K ∈ H and kj ∈ Atg(C)K}

for all j ∈ {1, 2, . . . ,m}. Particularly qH(kj) represents the
subsets Atg(C)K ∈ H containing the attribute kj .

Taking into account the previous notational conventions, in
order to compute a reduct Y ⊆ A, the instructions shown in
Algorithm 9 should be applied.

Algorithm 9: Computing a reduct Y

input : Cf , Kf = {k1, k2, . . . , km}, GC,IK , qH
output: Y

1 H := GC,IK ;
2 T := Kf ;
3 Y := Kf ;
4 repeat
5 vmin := min

{
card(qH(ki)) | ki ∈ T};

6 imin := j, such that card(qH(kj)) = vmin;
7 if min{card(Atg(C)K)|Atg(C)K ∈ qH(kimin)} = 2

then
8 for X ∈ qH(kimin

) do
9 if card(X) = 2 then

10 remove X from T

11 remove kimin from T ;
12 remove kimin

from Y ;
13 H = {Atg(C)K \ kimin

|Atg(C)K ∈ H};
14 until T = ∅;
15 return Y = Y

⋃
Cf

Algorithm 9 considers the philosophy of the linear
QUICKREDUCT II algorithm [29] in the multi-adjoint con-
cept lattice framework. Specifically, it removes from the set
of relatively necessary attributes Kf , the dispensable attributes.
Now, we explain in detail how Algorithm 9 works.

In lines 1, 2, 3, the auxiliary sets H , T and Y are initially
defined as GC,IK , Kf and Kf , respectively.

Line 5 computes the value vmin, which expresses the
minimal number of sets Atg(C)K containing some particular
relatively necessary attribute kj .

Line 6 defines the value imin representing the subscript of a
relatively necessary attribute which has obtained the previous
minimal value vmin. If two or more indices satisfy a minimal
value vmin, it is taken an arbitrary one.

In line 7, the algorithm checks if there exists an element in
qH(kimin) whose cardinality is equal to 2.

When the condition given in line 7 is satisfied, the for-
loop in line 8 goes over each component of qH(kimin). These
components are denoted as X .

In lines 9 and 10, if a component X has cardinality equal
to 2, that is X = {kimin

, k′}, with k′ ∈ Kf , then the algorithm
removes the elements of that component of the set T (the idea
of the step given in line 10, is to avoid removing the attribute
k′ from Y in the subsequent iterations, since the attribute kimin

is always removed from the set Y ).
The element kimin is removed from T in line 11. With this

step we guarantee that in the following loop the value kimin

is different from the value considered in the previous loop.
In line 12, we reduce the set Y because the attribute kimin

is not necessary to build the concept lattice.
Since kimin

is not needed, line 13 removes this attribute
from each element Atg(C)K ∈ H . This fact decreases the
cardinality of these sets and they can satisfy the condition in
line 7 in future loops.

The algorithm finishes in line 14 when the set T is empty.
As output (line 15), the algorithm includes in the set Y the
elements in the core.

Concerning the termination of the algorithm, we can ensure
that it terminates after a finite number of steps, because the
set T is reduced by at least one element (see lines 10 and 11
of the loop repeat-until) in each step of the algorithm. Notice
that if Kf = ∅, then GC,IK = ∅ and Y = Cf .

In order to prove that Algorithm 9 provides a reduct, we
need to introduce the following results.

The first one states that, we can always find at least two
different relatively necessary attributes generating a meet-
irreducible concept C when the condition Atg(C) ∩ Cf = ∅
holds.
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Proposition 2: Let C be a meet-irreducible concept. If
Atg(C) ∩ Cf = ∅ then card(Atg(C) ∩Kf) ≥ 2.

Proof: If Atg(C) ∩ Cf = ∅ then, for all a ∈ Atg(C) we
have that a /∈ Cf . In addition, since C ∈ MF (A) then, by
Theorem 3, there exist at least two attributes ai, aj ∈ Kf such
that ai, aj ∈ Atg(C). Consequently, card(Atg(C) ∩Kf) ≥ 2.

The following results relate Definition 9 to the notions of
consistent set and reduct.

Proposition 3: A subset Y ⊆ A is a consistent set if and
only if for all C ∈MF (A) the condition card(Atg(C)

⋂
Y ) ≥

1 holds.
Proof: If the subset of attributes Y is a consistent set,

by Lemma 1, we have that for every C = 〈φ↓ai,xi
, φ↓↑ai,xi

〉 ∈
MF (A), there exists 〈φ↓aj ,xj

, φ↓↑aj ,xj
〉 ∈ MF (Y ), such that

φ↓ai,xi
= φ↓aj ,xj

. Therefore, according to Definition 9 we have
that aj ∈ Atg(C) and, consequently, card(Atg(C)

⋂
Y ) ≥ 1.

Now, we will prove the second implication. We will assume
that for all C ∈MF (A) the inequality card(Atg(C)

⋂
Y ) ≥ 1

holds. Hence, given any meet-irreducible concept C, we have
that there exists an attribute a ∈ Y such that a ∈ Atg(C).
Then, by Definition 9, we can find a fuzzy-attribute φa,x ∈ Φ
such that 〈φ↓a,x, φ↓↑a,x〉 = C. Therefore, by Lemma 1, we can
conclude that the subset Y is a consistent set.

Proposition 4: A subset Y ⊆ A is a reduct if and only if Y
is a consistent set and for all a ∈ Y there exists C ∈MF (A)
such that Atg(C)

⋂
(Y \ {a}) = ∅.

Proof: First of all, we will suppose that the subset Y is
a reduct. Then, Y is a consistent set. In addition, applying
Lemma 2, for each attribute ai ∈ Y , there exists xi ∈ L1,
such that 〈φ↓ai,xi

, φ↓↑ai,xi
〉 ∈ MF (A) satisfying that φ↓ai,xi

6=
φ↓aj ,xj

, for all aj ∈ Y \ {ai} and xj ∈ L1. Considering
C = 〈φ↓ai,xi

, φ↓↑ai,xi
〉 and according to Definition 9, this is

equivalent to say that there exists C ∈MF (A) satisfying that
ai ∈ Atg(C) and Atg(C)

⋂
(Y \ {ai}) = ∅.

Now, we prove the converse. Given a ∈ Y , by hypothesis,
if we remove the atribute a from the subset Y , there exists a
concept C ∈ MF ()A which can not be generated from any
attribute Y \{a}. Therefore, the set Y \{a} is not a consistent
set, which leads us to a contradiction.

As direct consequences of the above results, we obtain the
following corollaries.

Corollary 1: Given a subset Y ⊆ A, if for all a ∈ Y there
exists C ∈MF (A) such that the equality card(Atg(C)

⋂
Y ) =

1 holds, then the subset Y is a reduct.
Corollary 2: Given a subset Y ⊆ A, if for all a ∈

Y \ Cf there exists C ∈ MF (A) such that the equality
card(Atg(C)K

⋂
Y ) = 1 holds, then the subset Y is a reduct.

Once we have presented the previous results, we can prove
that the subset of attributes Y , provided by Algorithm 9, is a
reduct.

Proposition 5: Algorithm 9 provides a reduct.
Proof: First of all, we will prove that the subset Y pro-

vided by Algorithm 9 is a consistent set, which is equivalent
by Proposition 3 to prove that, for all C ∈MF (A) there is an
attribute a ∈ Y satisfying that a ∈ Atg(C). For that purpose,
we will assume that there exists a concept C ∈MF (A) such
that Atg(C)

⋂
Y = ∅ and we will obtain a contradiction.

Then, since Cf ⊆ Y we have that Atg(C)
⋂
Cf = ∅ and,

applying Proposition 2, the inequality card(Atg(C)∩Kf) ≥ 2
holds, that is, card(Atg(C)K) ≥ 2.

If card(Atg(C)K) = 2, then there exist ai, aj ∈ A such that
Atg(C)K = {ai, aj} and, without lack of generality, we can
assume that card(qH(ai)) ≤ card(qH(aj)). Now, we have to
distinguish two different cases:
(a) If ai = kimin , then the attribute ai satisfies the conditions

displayed in lines 7 and 9 of our algorithm. Consequently,
by line 10 the attribute aj is removed from the set T .
Therefore, aj can never be considered equal to kimin

and,
by line 13, we can conclude that aj ∈ Y which lead
us to a contradiction since Y

⋂
Atg(C) = ∅ and aj ∈

Atg(C)K ⊆ Atg(C).
(b) If the attribute ai is never equal to kimin

, then, according
to line 13, this element is never removed from Y , that is,
ai ∈ Y , which is a contradiction since Y

⋂
Atg(C) = ∅

and ai ∈ Atg(C)K ⊆ Atg(C).
Now, we will suppose that card(Atg(C)K) > 2, that is,

Atg(C)K = {ai1 , . . . , ail}, where ai1 , . . . , ail ∈ A. We have
to consider two different situations again:
(c) We will suppose that there exists at least one attribute aij

satisfying that it is always different from kimin
. Then, by

line 13, this attribute aij is not removed from Y , that is,
aij ∈ Y and we obtain a contradiction.

(d) Otherwise, we suppose that, for all j ∈ {1, . . . , l} the
elements aij are equal to kimin

. In such a case, we can
consider again that card(qH(ai1)) ≤ . . . ≤ card(qH(ail)),
without lack of generality. Hence ai1 = kimin

, then the
attribute ai1 satisfies the conditions displayed in line 7,
but as card(Atg(C)K) > 2, this element does not satify
the condition given in line 9 of our algorithm. As a
consequence, according to lines 11 and 13, the attribute
ai1 is removed from T and Y , respectively. Now, we have
two different possibilities again:

(d1) If card(Atg(C)K \ {ai1}) = 2, we come back to the
situation of item (a).

(d2) If card(Atg(C)K \ {ai1}) > 2, we are again in the
situation shown in item (d).
If we repeat this process, due to we reduce one unit
the cardinality of Atg(C)K in each loop, we have
the set Atg(C) = {ail−1

, ail}, after a finite number
of steps. Then, we are in the case of item (a) and we
have a contradiction.

Finally, we can conclude that the set Y provided by Algo-
rithm 9 is a consistent set.

Now, we will prove that the set Y is also a reduct of the
multi-adjoint context using Corollary 2. Hence, we have to
prove that for all a ∈ Y \ Cf there exists C ∈ MF (A) such
that the equality card(Atg(C)K

⋂
(Y \ Cf)) = 1 holds.

If aj ∈ Y \Cf , we know that the attribute aj was removed
from T in line 10 in a step N of Algorithm 9. Therefore, there
exists a meet-irreducible concept C such that Atg(C)K =
{ai1 , . . . , ail , ail+1

, aj}. We also know that before step N a
finite number of loops in Algorithm 9 should be given in
order to obtain the set Atg(C)K \{ai1 , . . . , ail} = {ail+1

, aj},
satisfying that {ai1 , . . . , ail} /∈ Y and the element kimin is
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currently ail+1
. As a consequence, at the end of step N , by line

12, we obtain {ai1 , . . . , ail , kimin} /∈ Y . Thus, by Corollary 2,
we can conclude that the subset Y is a reduct.

Henceforth, we will continue our example and we will show
how the last algorithm is applied on it.

Example 8: Coming back to the environment of Example 1
and, in order to preserve the considered notations in Algo-
rithm 9, we provide the attributes with an ordering making an
identification as follows:

A = {H,Ba,F,C,St,Sn,T} = {a1, a2, a3, a4, a5, a6, a7}

Therefore, the inputs of our algorithm are the following:

Cf = {H,Ba} = {a1, a2}
Kf = {C,St,Sn,T} = {a4, a5, a6, a7}
GC,IK = {{Sn,T}, {C,St,Sn}} = {{a6, a7}, {a4, a5, a6}}

Table III represents the values that Algorithm 9 computes
in each loop for vmin, imin, and the sets T and Y .

Furthermore, in order to clarify the performance of the
algorithm, it is interesting to show the computation of the
cardinality of the function qH in each element of T , see
Table IV.

As a result, the algorithm has provided the minimal reduct,
Y = {a1, a2, a6} = {H,Ba,Sn}, of the multi-adjoint formal
context.

TABLE III
ALGORITHM 9 APPLIED TO EXAMPLE 1

loop vmin imin T Y
0 {a4, a5, a6, a7} {a4, a5, a6, a7}
1 1 4 {a5, a6, a7} {a5, a6, a7}
2 1 5 {a7} {a6, a7}
3 1 7 ∅ {a6}
Output:
Y={a1, a2, a6}

TABLE IV
COMPUTING THE CARDINALITY OF THE SETS qH(ki) WITH ALGORITHM 9

loop qH
1 card(qH(a4)) = card(qH(a5)) = card(qH(a7)) = 1

card(qH(a6)) = 2
2 card(qH(a5)) = card(qH(a7)) = 1

card(qH(a6)) = 2
3 card(qH(a7)) = 1

�
The computational complexity of the whole algorithm de-

pends on the number of attributes, objects and elements in
the lattice associated with the attributes. In usual datasets the
number of attributes is very small with respect to the number
of objects, which also implies that the elements in the lattice
is also small with respect to the number of objects. As a
consequence, we can consider that the cardinality of A and
L1 is negligible with respect to the cardinality of B, that is,
|A| ≪ |B| and |L1| ≪ |B|. Therefore, we will give the
complexity of the algorithm with respect to the cardinality of
B, which will be denoted as |B| = n.

The different modules introduced in Algorithms 1-9 are
computed sequentially and so, the final complexity will be the

greatest complexity of the different modules. We will detail
the complexity of the first module and the rest are computed
analogously. The first part is introduced in Algorithm 1,
which is split in two for loops. Clearly, the complexity of
the first part (lines 3-8) is |A| × |L1| × |B|. Since |A| and
|L1| are considered constants, then the complexity order is
O(n). Due to the elements in Φ2 depend on the elements in
L1 and A, the maximum number of elements in this set is
|A| × |L1|, which is a constant (product of two constants).
Therefore, the complexity of the second part (Lines 9-14) is
|A|×|L1|×|A|×|L1|×|B|, that is, the complexity order of this
part is also O(n). Thus, the complexity order of Algorithm 1
is O(n).

Algorithm 2 makes two comparison between two fuzzy
subsets of objects in Lines 5 and 7. Since they are in different
loops, the complexity order of this algorithm is also O(n). The
rest of algorithms neither compare fuzzy subsets of objects nor
consider loops with respect to objects, the complexity order
is constant. As a consequence, we can ensure that the final
complexity order of the whole algorithm is O(n).

In the following section, we gather several related works
and bring to light the main differences that we find, as well
as the main advantages that our work provides.

V. COMPARISON WITH RELATED WORKS

There exist several papers which deal with the problem of
obtaining reducts from formal contexts. In these works, the
authors present different mechanisms to reduce the contexts,
even some algorithms that pursue this goal. In this section, we
collect some of these reduction mechanisms and we highlight
the main advantages of our mechanism compared to them.

For instance, in [35], [36] the reducts are computed con-
sidering a classic formal context. The reducts are the prime
implicants of the discernibility function obtained from a dis-
cernibility matrix. This discernibility matrix is built consid-
ering the attributes that distinguish the intensions of each
pair of concepts of the concept lattice. Obviously, for the
computation of this matrix, all the concepts of the concept
lattice must be considered, which considerably increases the
computational cost. In addition, the computational cost of
turning a conjunctive normal form into a reduced disjunction
normal form, is also very high. The algorithms presented in
our work only need to consider the ∧-irreducible elements of
the concept lattice to obtain reducts, whose computation does
not require the whole set of concepts of the concept lattice.

Another paper that introduces an algorithm to compute
the reducts of a formal context considering a crisp setting
is [37]. In this work, a study about attribute reduction and
the computation of reducts is presented, which is based on
dominance relations obtained from the formal context. This
reduction mechanism considers the notion of dominance con-
sistent set, that is, a subset of attributes from which we can
define the same dominance relation that the one obtained from
the original set of attributes. When a dominance consistent
set is minimal with respect to the number of attributes, it
is called dominance reduct. They compute the dominance
reducts by means of a discernibility matrix with respect to the
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relation of dominance. These reducts are the prime implicants
of the discernibility function derived from the discernibility
matrix. Therefore, this reduction mechanism suffers the same
drawbacks from the paper mentioned above. Furthermore, the
authors prove an equivalence between the set of granular
reducts and the set of dominance reducts. Due to this equiva-
lence and the fact that the framework considered in our paper is
more general, we can ensure that all the results and algorithms
of our work can be successfully applied to the environment
of [37].

On the other hand, as we mentioned in the introduction, the
algorithms introduced in our study can also be analogously
applied for the reduction of the set of objects. For example,
in [38] the authors present an algorithm to reduce objects of a
formal decision context, from the definitions of consistent set
and reduct based on decision rules. This reduction guarantees
that the set of valid decision rules in the reduced context is
also valid in the original. However, they also work in a crisp
environment and the original structure of the concept lattice
is not preserved after the reduction, unlike our approach.

Other works analyze the reduction of the set of attributes
from the perspective provided by other frameworks. For
example, in [39], [40] the covering generalized rough sets
framework is considered to study the reduction of formal
contexts. In these works, considering a crisp environment, the
authors define formal contexts from a universe together with a
covering of the universe. From that universe and that covering,
they define a relationship R, that relates the elements in the
universe to the covering. Hence, the elements of the universe
are the objects, the elements of the covering are considered
as the set of attributes and R is the relation of the formal
context. In this way, the concept-forming operators coincide
with the approximation operators of the covering-based rough
set. Consequently, the reducts of the covering coincide with
the reducts of the derived formal context. Hence, the given
reduction follows a different philosophy of FCA and so, they
provide an incomparable reduction to our mechanism. On the
other way, the algorithms introduced in our work can also be
applied to other frameworks, such as to obtain reducts in the
covering generalized rough sets framework.

Other papers consider fuzzy environments, as for exam-
ple [41], [4]. In [41], the authors consider crisp subsets of
objects and fuzzy subsets of attributes. They also introduce
an algorithm whose reduction is carried out through the
discernibility matrix and the derived discernibility function.
Although they guarantee that the structure of the original
concept lattice is preserved after the reduction, the computa-
tional cost of obtaining the prime implicants is high, as it was
previously mentioned. In [4], the authors also work in a fuzzy
environment in which the concepts have a crisp set of objects
and a fuzzy set of attributes. They also compute the reducts
from the discernibility matrix and the discernibility function.
In order to obtain the discernibility matrix, all the extensions
of the concepts of the corresponding concept lattice need to be
compared. Once again, we find the same drawbacks that we
have already stated, which are overcome with the algorithms
introduced in our work.

As it was proved in [42] those mechanisms to reduce formal

contexts based on discernibility matrices are less efficient than
those based on clarification and reduction, that is, based on
Ganter and Wille’s original method [17]. All algorithms pre-
sented in this paper are based on the results given in [27], [28],
which were proven to be generalizations of the mechanism
given by Ganter and Wille to the multi-adjoint framework
in [27].

VI. CONCLUSIONS AND FUTURE WORK

In this work, we have considered the fuzzy framework of
multi-adjoint concept lattices. Basing on the characterization
of the meet-irreducible elements of a concept lattice and the
attribute classification theorems presented in [27], [28], we
have introduced new algorithms to know the set of irreducible
elements, the classification of the set of attributes as well as to
obtain reducts from any multi-adjoint framework and context.
The proposed algorithms are interesting because they consider
a general fuzzy environment, that requires few restrictions
and, therefore, can be applied in a wider variety of real
situations. In addition, this fuzzy framework is capable of
encompassing different frameworks considered in the theory
of formal concept analysis. Consequently, all the algorithms
introduced in this work can be successfully applied to other
existing frameworks of FCA.

In addition, we have presented several results in order to
relate the notions of reduct and consistent set to the notion
of attribute generating a meet-irreducible element. We have
also presented an illustrative example to clarify how all the
introduced algorithms work. In addition, we have included a
comparison with other related works given in the literature.

As future work, we are interested in an algorithm to get
reducts, with the goal to obtain a minimal reduct, that is,
the reduct with a smaller number of attributes among all the
possible reducts of the considered context. In addition, we will
apply these algorithms and results to solve real-life problems.
In particular, we would like to explore the potential of the
application in the digital forensics field in which the authors
coordinate an European network.
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